Железо
Сургутский Государственный Университет
Кафедра химии
РЕФЕРАТ
по теме:
ЖЕЛЕЗО
Выполнил:
Бондаренко М.А.
596/2 гр.
Проверил:
Щербакова Л.П.
Сургут, 2000
В периодической системе железо находится в четвертом периоде, в побочной
подгруппе VIII группы.
Химический знак – Fe (феррум). Порядковый номер – 26, электронная
формула 1s2 2s2 2p6 3d6 4s2.
Электронно-графическая формула
|((|( |( |( |( | | | | |
| | |3d| | |((| |4p| |
| | | | | |4s| | | |
Валентные электроны у атома железа находятся на последнем электронном
слое (4s2) и предпоследнем (3d6). В химических реакциях железо может
отдавать эти электроны и проявлять степени окисления +2, +3 и, иногда, +6.
Нахождение в природе.
Железо является вторым по распространенности металлом в природе (после
алюминия). В свободном состоянии железо встречается только в метеоритах,
падающих на землю. Наиболее важные природные соединения:
Fe2O3 ( 3H2O – бурый железняк;
Fe2O3 – красный железняк;
Fe3O4(FeO ( Fe2O3) – магнитный железняк;
FeS2 - железный колчедан (пирит).
Соединения железа входят в состав живых организмов.
Получение железа.
В промышленности железо получают восстановлением его из железных руд
углеродом (коксом) и оксидом углерода (II) в доменных печах. Химизм
доменного процесса следующий:
C + O2 = CO2,
CO2 + C = 2CO.
3Fe2O3 + CO = 2Fe3O4 + CO2,
Fe3O4 + CO = 3FeO + CO2,
FeO + CO = Fe + CO2.
Физические свойства.
Железо – серебристо серый металл, обладает большой ковкостью,
пластичностью и сильными магнитными свойствами. Плотность железа – 7,87
г/см3, температура плавления 1539(С.
Химические свойства.
В реакциях железо является восстановителем. Однако при обычной
температуре оно не взаимодействует даже с самыми активными окислителями
(галогенами, кислородом, серой), но при нагревании становится активным и
реагирует с ними:
2Fe + 3Cl2 = 2FeCl3 Хлорид железа (III)
3Fe + 2O2 = Fe3O4(FeO ( Fe2O3) Оксид железа (II,III)
Fe + S = FeS Сульфид железа (II)
При очень высокой температуре железо реагирует с углеродом, кремнием и
фосфором:
3Fe + C = Fe3C Карбид железа (цементит)
3Fe + Si = Fe3Si Силицид железа
3Fe + 2P = Fe3P2 Фосфид железа (II)
Железо реагирует со сложными веществами.
Во влажном воздухе железо быстро окисляется (корродирует):
4Fe + 3O2 + 6H2O = 4Fe(OH)3,
O
Fe(OH)3 = Fe
O – H + H2O
Ржавчина
Железо находится в середине электрохимического ряда напряжений
металлов, поэтому является металлом средней активности. Восстановительная
способность у железа меньше, чем у щелочных, щелочноземельных металлов и у
алюминия. Только при высокой температуре раскаленное железо реагирует с
водой:
3Fe + 4H2O = Fe3O4 + 4H2(
Железо реагирует с разбавленными серной и соляной кислотами, вытесняя
из кислот водород:
Fe + 2HCl = FeCl2 + H2(
Fe + H2SO4 = FeSO4 + H2(
При обычной температуре железо не взаимодействует с концентрированной
серной кислотой, так как пассивируется ею. При нагревании концентрированная
H2SO4 окисляет железо до сульфита железа (III):
2Fe + 6H2SO4 = Fe2(SO4)3 + 3SO2( + 6H2O.
Разбавленная азотная кислота окисляет железо до нитрата железа (III):
Fe + 4HNO3 = Fe(NO3)3 + NO( + 2H2O.
Концентрированная азотная кислота пассивирует железо.
Из растворов солей железо вытесняет металлы, которые расположены правее
его в электрохимическом ряду напряжений:
Fe + CuSO4 = FeSO4 + Cu, Fe0 + Cu2+ = Fe2+ + Cu0.
Соединения железа (II)
Оксид железа (II) FeO – черное кристаллическое вещество, нерастворимое
в воде. Оксид железа (II) получают восстановлением оксида железа(II,III)
оксидом углерода (II):
Fe3O4 + CO = 3FeO + CO2(.
Оксид железа (II) – основной оксид, легко реагирует с кислотами, при
этом образуются соли железа(II):
FeO + 2HCl = FeCl2 + H2O, FeO + 2H+ = Fe2+ + H2O.
Гидроксид железа (II) Fe(OH)2 – порошок белого цвета, не растворяется в
воде. Получают его из солей железа (II) при взаимодействии их со щелочами:
FeSO4 + 2NaOH = Fe(OH)2( + Na2SO4,
Fe2+ + 2OH- = Fe(OH)2(.
Гидроксид железа () Fe(OH)2 проявляет свойства основания, легко
реагирует с кислотами:
Fe(OH)2 + 2HCl = FeCl2 + 2H2O,
Fe(OH)2 + 2H+ = Fe2+ + 2H2O.
При нагревании гидроксид железа (II) разлагается:
Fe(OH)2 = FeO + H2O.
Соединения со степенью окисления железа +2 проявляют восстановительные
свойства, так как Fe2+ легко окисляются до Fe+3:
Fe+2 – 1e = Fe+3
Так, свежеполученный зеленоватый осадок Fe(OH)2 на воздухе очень быстро
изменяет окраску – буреет. Изменение окраски объясняется окислением Fe(OH)2
в Fe(OH)3 кислородом воздуха:
4Fe+2(OH)2 + O2 + 2H2O = 4Fe+3(OH)3.
Восстановительные свойства проявляют и соли двухвалентного железа,
особенно при действии окислителей в кислотной среде. Например, сульфат
железа (II) восстанавливает перманганат калия в сернокислотной среде до
сульфата марганца (II):
10Fe+2SO4 + 2KMn+7O4 + 8H2SO4 = 5Fe+32(SO4)3 + 2Mn+2SO4 + K2SO4 + 8H2O.
Качественная реакция на катион железа (II).
Реактивом для определения катиона железа Fe2+ является гексациано (III)
феррат калия (красная кровяная соль) K3[Fe(CN)6]:
3FeSO4 + 2K3[Fe(CN)6] = Fe3[Fe(CN)6]2( + 3K2SO4.
При взаимодействии ионов [Fe(CN)6]3- с катионами железа Fe2+ образуется
темно-синий осадок – турнбулева синь:
3Fe2+ +2[Fe(CN)6]3- = Fe3[Fe(CN)6]2(
Соединения железа (III)
Оксид железа (III) Fe2O3 – порошок бурого цвета, не растворяется в
воде. Оксид железа (III) получают:
А) разложением гидроксида железа (III):
2Fe(OH)3 = Fe2O3 + 3H2O
Б) окислением пирита (FeS2):
4Fe+2S2-1 + 11O20 = 2Fe2+3O3 + 8S+4O2-2.
Fe+2 – 1e ( Fe+3
2S-1 – 10e ( 2S+4
O20 + 4e ( 2O-2 11e
Оксид железа (III) проявляет амфотерные свойства:
А) взаимодействует с твердыми щелочами NaOH и KOH и с карбонатами
натрия и калия при высокой температуре:
Fe2O3 + 2NaOH = 2NaFeO2 + H2O,
Fe2O3 + 2OH- = 2FeO2- + H2O,
Fe2O3 + Na2CO3 = 2NaFeO2 + CO2.
Феррит натрия
Гидроксид железа (III) получают из солей железа (III) при
взаимодействии их со щелочами:
FeCl3 + 3NaOH = Fe(OH)3( + 3NaCl,
Fe3+ + 3OH- = Fe(OH)3(.
Гидроксид железа (III) является более слабым основанием, чем Fe(OH)2, и
проявляет амфотерные свойства (с преобладанием основных). При
взаимодействии с разбавленными кислотами Fe(OH)3 легко образует
соответствующие соли:
Fe(OH)3 + 3HCl ( FeCl3 + H2O
2Fe(OH)3 + 3H2SO4 ( Fe2(SO4)3 + 6H2O
Fe(OH)3 + 3H+ ( Fe3+ + 3H2O
Реакции с концентрированными растворами щелочей протекают лишь при
длительном нагревании. При этом получаются устойчивые гидрокомплексы с
координационным числом 4 или 6:
Fe(OH)3 + NaOH = Na[Fe(OH)4],
Fe(OH)3 + OH- = [Fe(OH)4]-,
Fe(OH)3 + 3NaOH = Na3[Fe(OH)6],
Fe(OH)3 + 3OH- = [Fe(OH)6]3-.
Соединения со степенью окисления железа +3 проявляют окислительные
свойства, так как под действием восстановителей Fe+3 превращается в Fe+2:
Fe+3 + 1e = Fe+2.
Так, например, хлорид железа (III) окисляет йодид калия до свободного
йода:
2Fe+3Cl3 + 2KI = 2Fe+2Cl2 + 2KCl + I20
Качественные реакции на катион железа (III)
А) Реактивом для обнаружения катиона Fe3+ является гексациано (II)
феррат калия (желтая кровяная соль) K2[Fe(CN)6].
При взаимодействии ионов [Fe(CN)6]4- с ионами Fe3+ образуется темно-
синий осадок – берлинская лазурь:
4FeCl3 + 3K4[Fe(CN)6] ( Fe4[Fe(CN)6]3( +12KCl,
4Fe3+ + 3[Fe(CN)6]4- = Fe4[Fe(CN)6]3(.
Б) Катионы Fe3+ легко обнаруживаются с помощью роданида аммония (NH4CNS). В
результате взаимодействия ионов CNS-1 с катионами железа (III) Fe3+
образуется малодиссоциирующий роданид железа (III) кроваво-красного цвета:
FeCl3 + 3NH4CNS ( Fe(CNS)3 + 3NH4Cl,
Fe3+ + 3CNS1- ( Fe(CNS)3.
Применение и биологическая роль железа и его соединений.
Важнейшие сплавы железа – чугуны и стали – являются основными
конструкционными материалами практически во всех отраслях современного
производства.
Хлорид железа (III) FeCl3 применяется для очистки воды. В органическом
синтезе FeCl3 применяется как катализатор. Нитрат железа Fe(NO3)3 ( 9H2O
используют при окраске тканей.
Железо является одним из важнейших микроэлементов в организме человека и
животных (в организме взрослого человека содержится в виде соединений около
4 г Fe). Оно входит в состав гемоглобина, миоглобина, различных ферментов и
других сложных железобелковых комплексов, которые находятся в печени и
селезенке. Железо стимулирует функцию кроветворных органов.
Список использованной литературы:
1. «Химия. Пособие репетитор». Ростов-на-Дону. «Феникс». 1997 год.
2. «Справочник для поступающих в вузы». Москва. «Высшая школа», 1995
год.
3. Э.Т. Оганесян. «Руководство по химии поступающим в вузы». Москва.
1994 год.
-----------------------
|((|( |( |( |( | |( | | |
| | |3d| | |( | |4p| |
| | | | | |4s| | | |
Нормальное состояние атома железа
Возбужденное состояние атомов железа
11e
4e
4e |