Влияние углекислого газа
Содержание.
1 Человек и климат.
2 Введение.
Взаимосвязь между энергопотреблением, экономической
деятельностью и поступлением [pic] в атмосферу.
Потребление энергии и выбросы углекислого газа.
3 Углерод в природе.
Основные химические соединения и реакции.
Изотопы углерода.
4 Углерод в атмосфере.
Атмосферный углекислый газ.
Углерод в почве.
5 Прогнозы концентрации углекислого газа в атмосфере на будущее.
Основные выводы.
6 Список литературы.
Введение.
Деятельность человека достигла уже такого уровня развития, при
котором её влияние на природу приобретает глобальный характер. Природные
системы - атмосфера, суша, океан, - а также жизнь на планете в целом
подвергаются этим воздействиям. Известно, что на протяжении последнего
столетия увеличивалось содержание в атмосфере некоторых газовых
составляющих, таких, как двуокись углерода ([pic]), закись азота ([pic]),
метан ([pic]) и тропосферный озон ([pic]). Дополнительно в атмосферу
поступали и другие газы, не являющиеся естественными компонентами
глобальной экосистемы. Главные из них - фторхлоруглеводороды. Эти газовые
примеси поглощают и излучают радиацию и поэтому способны влиять на климат
Земли. Все эти газы в совокупности можно назвать парниковыми.
Представление о том, что климат мог меняться в результате выброса в
атмосферы двуокиси углерода, появилось не сейчас. Аррениус указал на то,
что сжигание ископаемого топлива могло привести к увеличению концентрации
атмосферного [pic] и тем самым изменить радиационный баланс Земли. В
настоящие время мы приблизительно известно, какое количество [pic]
поступило в атмосферу за счёт сжигания ископаемого топлива и изменений в
использовании земель (сведения лесов и расширения сельскохозяйственных
площадей), и можно связать наблюдаемое увеличение концентрации атмосферного
[pic] с деятельностью человека.
Механизм воздействия [pic] на климат заключается в так называемом
парниковом эффекте. В то время как для солнечной коротковолновой радиации
[pic] прозрачен, уходящую от земной поверхности длинноволновую радиацию
этот газ поглощает и излучает поглощённую энергию по всем направлениям.
Вследствие этого эффекта увеличение концентрации атмосферного [pic]
приводит к нагреву поверхности Земли и нижней атмосферы. Продолжающийся
рост концентрации [pic] в атмосфере может привести к изменению глобального
климата, поэтому прогноз будущих концентраций углекислого газа является
важной задачей.
Поступление углекислого газа в атмосферу
в результате промышленных
выбросов.
Основным антропогенным источником выбросов [pic] является сжигание
всевозможных видов углеродосодержащего топлива. В настоящее время
экономическое развитие обычно связывается с ростом индустриализации.
Исторически сложилось, что подъём экономики зависит от наличия доступных
источников энергии и количества сжигаемого ископаемого топлива. Данные о
развитии экономики и энергетики для большинства стран за период 1860-1973
гг. Свидетельствуют не только об экономическом росте, но и о росте
энергопотребления. Тем не менее одно не является следствием другого.
Начиная с 1973 года во многих странах отмечается снижение удельных
энергозатрат при росте реальных цен на энергию. Недавнее исследование
промышленного использования энергии в США показало, что начиная с 1920 года
отношение затрат первичной энергии к экономическому эквиваленту
производимых товаров постоянно уменьшалось. Более эффективное использование
энергии достигается в результате совершенствования промышленной технологии,
транспортных средств и проектирования зданий. Кроме того, в ряде
промышленно развитых стран произошли сдвиги в структуре экономики,
выразившиеся в переходе от развития сырьевой и перерабатывающей
промышленности к расширению отраслей, производящих конечный продукт.
Минимальный уровень потребления энергии на душу населения,
необходимый в настоящее время для удовлетворения нужд медицины, образования
и рекреации, значительно меняется от региона к региону и от страны к
стране. Во многих развивающихся странах значительный рост потребления
высококачественных видов топлива на душу населения является существенным
фактором для достижения более высокого уровня жизни. Сейчас представляется
вероятным, что продолжение экономического роста и достижение желаемого
уровня жизни не связаны с уровнем энергопотребления на душу населения,
однако этот процесс ещё недостаточно изучен.
Можно предположить, что до достижения середины следующего столетия
экономика большинства стран сумеет приспособиться к повышенным ценам на
энергию, уменьшая потребности в рабочей силе и в других видах ресурсов, а
также увеличивая скорость обработки и передачи информации или, возможно,
изменяя структуру экономического баланса между производством товаров и
предоставлением услуг. Таким образом, от выбора стратегии развития
энергетики с той или иной долей использования угля или ядерного топлива в
энергетической системе будет непосредственно зависеть скорость промышленных
выбросов [pic].
Потребление энергии и выбросы
углекислого газа.
Энергия не производится ради самого производства энергии. В
промышленно развитых странах основная часть вырабатываемой энергии
приходится на промышленность, транспорт, обогрев и охлаждение зданий. Во
многих недавно выполненных исследованиях показано, что современный уровень
потребления энергии в промышленно развитых станах может быть существенно
снижен за счёт применения энергосберегающих технологий. Было рассчитано,
что если бы США перешли, при производстве товаров широкого потребления и в
сфере услуг, на наименее энергоёмкие технологии при том же объёме
производства, то количество поступающего в атмосферу [pic] уменьшилось бы
на 25%. Результирующее уменьшение выбросов [pic] в целом по земному шару
при этом составило бы 7%. Подобный эффект имел бы место и в других
промышленно развитых странах. Дальнейшего снижения скорости поступления
[pic] в атмосферу можно достичь путём изменения структуры экономики в
результате внедрения более эффективных методов производства товаров и
усовершенствований в сфере предоставления услуг населению.
Углерод в природе.
Среди множества химических элементов, без которых невозможно
существование жизни на Земле, углерод является главным. Химические
превращения органических веществ связаны со способностью атома углерода
образовывать длинные ковалентные цепи и кольца. Биогеохимический цикл
углерода, естественно, очень сложный, так как он включает не только
функционирование всех форм жизни на Земле, но и перенос неорганических
веществ как между различными резервуарами углерода, так и внутри них.
Основными резервуарами углерода являются атмосфера, континентальная
биомасса, включая почвы, гидросферу с морской биотой и литосферой. В
течение последних двух столетий в системе атмосфера - биосфера - гидросфера
происходят изменения потоков углерода, интенсивность которых примерно на
порядок величины превышает интенсивность геологических процессов переноса
этого элемента. По этой причине следует ограничиться анализом
взаимодействий в пределах этой системы, включая почвы.
Основные химические соединения и реакции.
Известно более миллиона углеродных соединений, тысячи из которых
участвуют в биологических процессах. Атомы углерода могут находиться в
одном из девяти возможных состояний окисления: от +IV до -IV. Наиболее
распространённое явление - это полное окисление, т.е. +IV, примерами таких
соединений могут служить [pic] и [pic]. Более 99% углерода в атмосфере
содержится в виде углекислого газа. Около 97% углерода в океанах существует
в растворённой форме ([pic]), а в литосфере - в виде минералов. Примером
состояния окисления +II является малая газовая составляющая атмосферы
[pic], которая довольно быстро окисляется до [pic]. Элементарный углерод
присутствует в атмосфере в малых количествах в виде графита и алмаза, а в
почве - в форме древесного угля. Ассимиляция углерода в процессе
фотосинтеза приводит к образованию восстановленного углерода, который
присутствует в биоте, мёртвом органическом веществе почвы, в верхних слоях
осадочных пород в виде угля, нефти и газа, захоронённых на больших
глубинах, и в литосфере - в виде рассеянного недоокисленного углерода.
Некоторые газообразные соединения, содержащие недоокисленный углерод [pic],
в частности метан, поступают в атмосферу при восстановлении веществ,
происходящем в анаэробных процессах. Хотя при бактериальном разложении
образуется несколько различных газообразных соединений, они быстро
окисляются, и можно считать, что в систему поступает [pic]. Исключением
является метан, поскольку он также влияет на парниковый эффект. В океанах
содержится значительное количество растворённых соединений органического
углерода, процессы окисления которых до [pic] известны ещё недостаточно
хорошо.
Изотопы углерода.
В природе известно семь изотопов углерода, из которых существенную
роль играют три. Два из них - [pic] и [pic] - являются стабильными, а один
- [pic] - радиоактивным с периодом полураспада 5730 лет. Необходимость
изучения различных изотопов углерода обусловлена тем, что скорости переноса
соединений углерода и условия равновесия в химических реакциях зависят от
того, какие изотопы углерода содержат эти соединения. По этой причине в
природе наблюдается различное распределение стабильных изотопов углерода.
Распределение же изотопа [pic], с одной стороны, зависит от его образования
в ядерных реакциях с участием нейтронов и атомов азота в атмосфере, а с
другой - от радиоактивного распада.
Углерод в атмосфере.
Тщательные измерения содержания атмосферного [pic] были начаты в 1957
году Киллингом в обсерватории Мауна-Лоа. Регулярные измерения содержания
атмосферного [pic] проводятся также на ряде других станций. Из анализа
наблюдений можно заключить, что годовой ход концентрации [pic] обусловлен в
основном сезонными изменениями цикла фотосинтеза и деструкции растений на
суше; на него также влияет, хотя и меньшей степени, годовой ход температуры
поверхности океана, от которого зависит растворимость [pic] в морской воде.
Третьим, и, вероятно, наименее важным фактором является годовой ход
интенсивности фотосинтеза в океане. Среднее за каждый данный год содержание
[pic] в атмосфере несколько выше в северном полушарии, поскольку источники
антропогенного поступления [pic] расположены преимущественно в северном
полушарии. Кроме того, наблюдаются небольшие межгодовые изменения
содержания [pic], которые, вероятно, определяются особенностями общей
циркуляции атмосферы. Из имеющихся данных по изменению концентрации [pic] в
атмосфере основное значение имеют данные о наблюдаемом в течение последних
25 лет регулярном росте содержания атмосферного [pic]. Более ранние
измерения содержания атмосферного углекислого газа (начиная с середины
прошлого века) были, как правило, недостаточно полны. Образцы воздуха
отбирались без необходимой тщательности и не производилась оценка
погрешности результатов. С помощью анализа состава пузырьков воздуха из
ледниковых кернов стало возможным получить данные для периода с 1750 по
1960 год. Было также выявлено, что определённые путём анализа воздушных
включений ледников значения концентраций атмосферного [pic] для 50-х годов
хорошо согласуются с данными обсерватории Мауна-Лоа. Концентрация [pic] в
течение 1750-1800 годов оказалась близкой к значению 280 млн.[pic], после
чего она стала медленно расти и к 1984 году составляла 343[pic]1 млн.[pic].
Углерод в почве.
По разным оценкам, суммарное содержание углерода составляет около
[pic] г С. Главная неопределённость существующих оценок обусловлена
недостаточной полнотой сведений о площадях и содержании углерода в
торфяниках планеты.
Более медленный процесс разложения углерода в почвах холодных
климатических зон приводит к большей концентрации углерода почв (на единицу
поверхности) в бореальных лесах и травянистых сообществах средних широт по
сравнению с тропическими экосистемами. Однако только небольшое количество
(несколько процентов или даже меньше) детрита, поступающего ежегодно в
резервуар почв, остаётся в них в течение длительного времени. Большая часть
мёртвого органического вещества окисляется до [pic] за несколько лет. В
чернозёмах около 98% углерода подстилки характеризуется временем оборота
около 5 месяцев, а 2% углерода подстилки остаются в почве в среднем в
течение 500-1000 лет. Эта характерная черта почвообразовательного процесса
проявляется также в том, что возраст почв в средних широтах, определяемый
радиоизотопным методом, составляет от нескольких сотен до тысячи лет и
более. Однако скорость разложения органического вещества при трансформации
земель, занятых естественной растительностью, в сельскохозяйственные угодья
совершенно другая. Например, высказывается мнение, что 50% органического
углерода в почвах, используемых в сельском хозяйстве Северной Америки,
могло быть потеряно вследствие окисления, так как эти почвы начали
эксплуатироваться до начала прошлого века или в самом его начале.
Изменения содержания углерода в
континентальных экосистемах.
За последние 200 лет произошли значительные изменения в
континентальных экосистемах в результате возрастающего антропогенного
воздействия. Когда земли, занятые лесами и травянистыми сообществами,
превращаются в сельскохозяйственные угодья, органическое вещество, т.е.
живое вещество растений и мёртвое органическое вещество почв, окисляется и
поступает в атмосферу в форме [pic]. Какое-то количество элементарного
углерода может также захораниваться в почве в виде древесного угля (как
продукт, оставшийся от сжигания леса) и, таким образом, изыматься из
быстрого оборота в углеродном цикле. Содержание углерода в различных
компонентах экосистем изменяется, поскольку восстановление и деструкция
органического вещества зависят от географической широты и типа
растительности.
Были проведены многочисленные исследования, имевшие своей целью
разрешить существующую неопределённость в оценке изменений запасов углерода
в континентальных экосистемах. Основываясь на данных этих исследований,
можно прийти к выводу о том, что поступление [pic] в атмосферу с 1860 по
1980 год составило [pic] г. С и что в 1980 году биотический выброс углерода
был равен [pic] г. С/год. Кроме того, возможно влияние возрастающих
атмосферных концентраций [pic] и выбросов загрязняющих веществ, таких, как
[pic] и [pic], на интенсивность фотосинтеза и деструкции органического
вещества континентальных экосистем. По-видимому, интенсивность фотосинтеза
растёт с увеличением концентрации [pic] в атмосфере. Наиболее вероятно, что
этот рост характерен для сельскохозяйственных культур, а в естественных
континентальных экосистемах повышение эффективности использования воды
могло бы привести к ускорению образования органического вещества.
Прогнозы концентрации углекислого
газа в атмосфере на будущее.
Основные выводы.
За последние десятилетия было создано большое количество моделей
глобального углеродного цикла, рассматривать которые в данной работе не
представляется целесообразным из-за того, что они в достаточной мере сложны
и объёмны. Рассмотрим лишь кратко основные их выводы. Различные сценарии,
использованные для прогноза содержания [pic] в атмосфере в будущем, дали
сходные результаты. Ниже приведёна попытка подвести общий итог наших
сегодняшних знаний и предположений, касающихся проблемы антропогенного
изменения концентрации [pic] в атмосфере.
. С 1860 по 1984 год в атмосферу поступило [pic] г. За счёт сжигания
ископаемого топлива, скорость выброса [pic] в настоящее время (по
данным на 1984 год) равна [pic] г. С/год.
. В течение этого же периода времени поступление [pic] в атмосферу за
вырубки лесов и изменения характера землепользования составило [pic]
г. С, интенсивность этого поступления в настоящее время равна [pic]
г. С/год.
. С середины прошлого века концентрация [pic] в атмосфере увеличилась
от [pic] до [pic] млн.[pic] в 1984 году.
. Основные характеристики глобального углеродного цикла хорошо
изучены. Стало возможным создание количественных моделей, которые
могут быть положены в основу прогнозов роста концентрации [pic] в
атмосфере при использовании определённых сценариев выброса.
. Неопределённости прогнозов вероятных изменений концентрации [pic] в
будущем, получаемых на основе сценариев выбросов, значительно меньше
значительно меньше неопределённостей самих сценариев выбросов.
. Если интенсивность выбросов [pic] в атмосферу в течение ближайших
четырёх десятилетий останется постоянной или будет возрастать очень
медленно (не более 0,5% в год) и в более отдалённом будущем также
будет расти очень медленно, то к концу XXI века концентрация
атмосферного [pic] составит около 440 млн.[pic], т.е. не более, чем
на 60% превысит доиндустриальный уровень.
. Если интенсивность выбросов [pic] в течение ближайших четырёх
десятилетий будет возрастать в среднем на 1-2 % в год, т.е. также,
как она возрастала с 1973 года до настоящего времени, а в более
отдалённом будущем темпы её роста замедлятся, то удвоение содержания
[pic] в атмосфере по сравнению с доиндустриальным уровнем произойдёт
к концу XXI века. |