Главная » Каталог    
рефераты Разделы рефераты
рефераты
рефератыГлавная

рефератыБиология

рефератыБухгалтерский учет и аудит

рефератыВоенная кафедра

рефератыГеография

рефератыГеология

рефератыГрафология

рефератыДеньги и кредит

рефератыЕстествознание

рефератыЗоология

рефератыИнвестиции

рефератыИностранные языки

рефератыИскусство

рефератыИстория

рефератыКартография

рефератыКомпьютерные сети

рефератыКомпьютеры ЭВМ

рефератыКосметология

рефератыКультурология

рефератыЛитература

рефератыМаркетинг

рефератыМатематика

рефератыМашиностроение

рефератыМедицина

рефератыМенеджмент

рефератыМузыка

рефератыНаука и техника

рефератыПедагогика

рефератыПраво

рефератыПромышленность производство

рефератыРадиоэлектроника

рефератыРеклама

рефератыРефераты по геологии

рефератыМедицинские наукам

рефератыУправление

рефератыФизика

рефератыФилософия

рефератыФинансы

рефератыФотография

рефератыХимия

рефератыЭкономика

рефераты
рефераты Информация рефераты
рефераты
рефераты

Шпора: Шпоры по вышке

1. Матрицы. Линейные операции над ними и их свойства.

Матрицей называется прямоугольная таблица чисел, содержащая m строк

одинаковой длины.

Шпора: Шпоры по вышке

Матрицы равны между собой, если равны все их соответствующие элементы.

Матрица, у которой число строк и столбцов равно – называется квадратной.

Матрица, все элементы которой, кроме элементов главной диагонали равны нулю,

называется диагональной.

Диагональная матрица, у которой все элементы главной диагонали равны 1,

называется единичной. Обозначается буквой Е.

Матрица, у которой все элементы по одну сторону от главной диагонали равны нулю,

называется треугольной.

Матрица, у которой все элементы равны нулю, называется нулевой.

1. Шпора: Шпоры по вышке

2. Шпора: Шпоры по вышке

3. Шпора: Шпоры по вышке

4. Шпора: Шпоры по вышке

5. Шпора: Шпоры по вышке

6. Шпора: Шпоры по вышке

7. Шпора: Шпоры по вышке

8. Шпора: Шпоры по вышке

2. Умножение матриц. Транспонирование. Свойства.

Операция умножения возможна, если количество столбцов первой матрицы равно

количеству строк другой матрицы.

Шпора: Шпоры по вышке

где Шпора: Шпоры по вышке Шпора: Шпоры по вышке

1. Шпора: Шпоры по вышке

2. Шпора: Шпоры по вышке

3. Шпора: Шпоры по вышке

4. Шпора: Шпоры по вышке

Матрица, полученная заменой каждой ее строки столбцом с тем же номером,

называется матрицей транспонированной, к данной.

1. Шпора: Шпоры по вышке

2. Шпора: Шпоры по вышке

3. Определители матриц. Свойства определителей. Миноры и алгебраические

дополнения.

1. Шпора: Шпоры по вышке Шпора: Шпоры по вышке Шпора: Шпоры по вышке

2. Шпора: Шпоры по вышке Шпора: Шпоры по вышке Шпора: Шпоры по вышке

3. Шпора: Шпоры по вышке Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

Для нахождения определителя более высокого порядка, матрицу приводят к

треугольному виду и считают произведение элементов на главной диагонали.

Свойства:

1. Определитель не изменится, если его строки заменить столбцами, и

наоборот.

2. При перестановке двух параллельных рядов определитель меняет знак.

3. Определитель, имеющий два одинаковых или пропорциональных ряда,

равен нулю.

4. Общий множитель элементов можно вынести за знак определителя.

5. Если элементы какого-либо ряда представляют собой сумму элементов,

то определитель может быть разложен на сумму двух соответствующих

определителей.

6. Определитель не изменится, если прибавим ко всем элементам ряда

матрицы соответствующих элементов параллельного ряда, умноженных на одно и

тоже число.

7. Определитель равен сумме элементов, умноженных на соответствующее

им алгебраическое дополнение.

8. Сумма произведения элементов одного ряда на алгебраические

дополнения параллельного ряда равна нулю.

4. Разложение определителя по элементам ряда. Теорема замещения.

Определитель равен сумме произведений элементов на соответствующее им

алгебраическое дополнение.

Берем любые N чисел Шпора: Шпоры по вышке и умножим на алгебраическое дополнение какой-либо строки.

Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

5. Обратная матрица. Достаточное условие существования обратной матрицы.

Шпора: Шпоры по вышке

1. Шпора: Шпоры по вышке

2. Шпора: Шпоры по вышке

3. Шпора: Шпоры по вышке

Для того чтобы матрица имела обратную достаточно того, чтобы она была

невырождена.

6. Элементарные преобразования матриц. Ранг матрицы. Вычисление ранга матрицы.

1. Перестановка местами 2 параллельных рядов матрицы.

2. Умножение элементов ряда матрицы на число отличное от нуля,

отличное от нуля.

3. Прибавление ко всем элементам ряда матрицы соответствующих

элементов параллельного ряда, умноженных на одно и тоже число.

Из элементов стоящих на пересечении выделенных строк и столбцов, составим

определитель k-ого порядка. Наибольший из порядков таких миноров называется

рангом матрицы.

Шпора: Шпоры по вышке

7. Решение линейных уравнений. Решение невырожденых систем.

Метод Гаусса.

Сначала следует привести систему к треугольному (ступенчатому) виду, а затем

ступенчато решить.

Формула Крамера.

Шпора: Шпоры по вышке

Шпора: Шпоры по вышке Шпора: Шпоры по вышке

Подсчитать определитель матрицы А.

Затем матрицей B заменить первый столбец матрицы А, подсчитать определитель и

разделить его на detA, так мы получим x1. То же самое проделать со

2-ым и 3-им столбцом.

8. Решение произвольных систем. Теорема Кронекера-Капелли.

Система линейных алгебраических уравнений совместна тогда и только тогда,

когда ранг расширенной матрицы системы равен рангу основной матрицы.

Найти какой-либо базисный минор порядка r. Взять r уравнений, из которых

составлен базисный минор. Неизвестные, коэффициенты которых входят в базисный

минор, называются главными и остаются слева, а остальные называются

свободными и переносятся в правую часть уравнения. Найдя главные через

свободные, получим общее решение системы.

9. Однородные система уравнений. Фундаментальная система решений.

Система однородных уравнений всегда имеет нулевое решение. Если ранг матрицы

меньше числа неизвестных, то система имеет бесчисленное множество решений.

Для того, чтобы система имела ненулевые решения, необходимо, чтобы ее

определитель был равен нулю.

10. Линейные пространства. Линейная зависимость и независимость системы

векторов. Размерность и базис линейного пространства.

Рассмотрим непустое множество элементов, которые будем обозначать через x, y,

z, . и множество действительных чисел. На этом множестве введем две операции

(сложение и умножение). Пусть эти две операции подчиняются аксиомам:

1. Шпора: Шпоры по вышке

2. Шпора: Шпоры по вышке

3. Шпора: Шпоры по вышке

4. Шпора: Шпоры по вышке

5. Шпора: Шпоры по вышке

6. Шпора: Шпоры по вышке

7. Шпора: Шпоры по вышке

8. Шпора: Шпоры по вышке

V; x, y, z, . Шпора: Шпоры по вышке V

Множество V с двумя операциями, удовлетворяющее аксиомам называется линейным

пространством.

Элементы линейного пространства называются векторами, обозначаются Шпора: Шпоры по вышке

, Шпора: Шпоры по вышке , Шпора: Шпоры по вышке

. Существует единственный нулевой элемент, для каждого элемента существует

единственный противоположный.

Линейная зависимость и независимость системы векторов. Пусть имеется n векторов.

Шпора: Шпоры по вышке

Составим линейную комбинацию:

Шпора: Шпоры по вышке

Шпора: Шпоры по вышке , если Шпора: Шпоры по вышке Шпора: Шпоры по вышке система n векторов – линейно-зависима.

Если среди n векторов какие-то k линейно-зависимы, то вся система векторов

является линейно-зависимой.

Если система n векторов линейно-независима, то любая часть из этих векторов

будет тоже линейно-независимой.

Размерность и базис линейного пространства. Пусть система n векторов

линейно-независима, а любая система n+1 векторов – линейно-зависима, тогда

число n называют размерностью пространства. dimV=n

Система этих n линейно-независимых векторов называется базисом линейного

пространства. Рассмотрим систему n+1 векторов. Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

Такое представление называется разложение Шпора: Шпоры по вышке

по базису, а числа Шпора: Шпоры по вышке

называют координатами вектора.

Разложение любого вектора в выбранном базисе - единственно.

11. Матрица перехода от базиса к базису. Преобразование координат

вектора при переходе к новому базису.

n – мерное пространство.

Vn – базис, состоящий из n векторов.

В пространстве есть базисы Шпора: Шпоры по вышке

Введем матрицу перехода от Шпора: Шпоры по вышке к Шпора: Шпоры по вышке .

Шпора: Шпоры по вышке Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

Шпора: Шпоры по вышке Шпора: Шпоры по вышке Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

12. Евклидово пространство. Длина вектора. Угол между векторами.

Рассмотрим линейное пространство V, в котором уже есть 2 операции (сложение и

умножение). В этом пространстве введем еще одну операцию. Она будет

удовлетворять следующим аксиомам.

1. Шпора: Шпоры по вышке

2. Шпора: Шпоры по вышке

3. Шпора: Шпоры по вышке

4. Шпора: Шпоры по вышке

Указанная операция называется скалярным произведением векторов. N – мерное

линейное пространство с введенной операцией скалярного произведения, называется

Евклидовым пространством.

Длиной вектора называется арифметическое значение квадратного корня и

скалярного квадрата.

Шпора: Шпоры по вышке

Длина вектора удовлетворяет следующим условиям:

1. Шпора: Шпоры по вышке , если Шпора: Шпоры по вышке

2. Шпора: Шпоры по вышке

3. Шпора: Шпоры по вышке - неравенство Коши-Буня

4. Шпора: Шпоры по вышке - неравенство треугольника

Шпора: Шпоры по вышке Шпора: Шпоры по вышке Шпора: Шпоры по вышке

13.Скалярное произведение векторов и его свойства.

Скалярным произведением двух ненулевых векторов называется число,

равное произведению этих векторов на косинус угла между ними.

Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

1. Шпора: Шпоры по вышке

2. Шпора: Шпоры по вышке

3. Шпора: Шпоры по вышке

4. Шпора: Шпоры по вышке

14. Векторное произведение векторов и его свойства.

Три некомпланарных вектора образуют правую тройку если с конца третьего

поворот от первого вектора ко второму совершается против часовой стрелки. Если

по часовой – то левую.

Векторным произведением вектора Шпора: Шпоры по вышке на вектор Шпора: Шпоры по вышке называется вектор Шпора: Шпоры по вышке , который:

1. Перпендикулярен векторам Шпора: Шпоры по вышке и Шпора: Шпоры по вышке .

2. Имеет длину, численно равную площади параллелограмма, образованного на

векторах Шпора: Шпоры по вышке и Шпора: Шпоры по вышке

.

Шпора: Шпоры по вышке , где Шпора: Шпоры по вышке

3. ВекторыШпора: Шпоры по вышке , Шпора: Шпоры по вышке и Шпора: Шпоры по вышке образуют правую тройку векторов.

Свойства:

1. Шпора: Шпоры по вышке

2. Шпора: Шпоры по вышке

3. Шпора: Шпоры по вышке

4. Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

15. Смешанное произведение векторов и его свойства.

Смешанное произведение записывают в виде: Шпора: Шпоры по вышке .

Смысл смешенного произведения: сначала два вектора векторно перемножают, а

затем полученный скалярно перемножают с третьим вектором. Смешанное

произведение представляет собой число – число. Результат смешанного

произведения – объем параллелепипеда, образованного векторами.

Свойства.

1. Смешанное произведение не меняется при циклической перестановке

сомножителей:

Шпора: Шпоры по вышке

2. Смешанное произведение не изменится при перемене местами векторного и

скалярного произведения.

Шпора: Шпоры по вышке

3. Смешанное произведение меняет знак при перемене мест любых двух

векторов-сомножителей. Шпора: Шпоры по вышке

4. Смешанное произведение трех ненулевых векторов равно нулю тогда и

только тогда, когда они компланарны.

Шпора: Шпоры по вышке

Три вектора называются компланарными, если результат смешанного произведения

равен нулю.

16. Линейные преобразования пространства. Матрица линейного

преобразования. Связь между координатами образа и прообраза.

Рассмотрим линейное пространство V, в котором каждому элементу x, в силу

некоторого закона поставлен элемент этого же пространства.

Шпора: Шпоры по вышке

Шпора: Шпоры по вышке - прообраз

Шпора: Шпоры по вышке - образ

Каждому прообразу соответствует единственный образ.

Каждый образ имеет единственный прообраз.

Линейное преобразование пространства, при котором существует

взаимнооднозначные соответствия.

Блективное преобразование – Шпора: Шпоры по вышке называется линейным, если выполняются 2 условия.

1. Шпора: Шпоры по вышке

2. Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

Рассмотрим n-мерное линейное пространство

Шпора: Шпоры по вышке

Для того, чтобы задать линейные преобразования в этом пространстве достаточно

задать это преобразование для базисных векторов.

Шпора: Шпоры по вышке Шпора: Шпоры по вышке Шпора: Шпоры по вышке Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

Матрица линейного преобразования.

Пусть F – линейное преобразование линейного пространства, переводящая базис Шпора: Шпоры по вышке

в базис Шпора: Шпоры по вышке . Т.к. Шпора: Шпоры по вышке

- базис, то верны соотношения

Шпора: Шпоры по вышке

Шпора: Шпоры по вышке Шпора: Шпоры по вышке Шпора: Шпоры по вышке Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

А – является матрицей линейного преобразования или линейным оператором

пространства.

Связь между координатами образа и прообраза.

Шпора: Шпоры по вышке

В базисе Шпора: Шпоры по вышке вектор Шпора: Шпоры по вышке имеет координаты

Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

Шпора: Шпоры по вышке Шпора: Шпоры по вышке Шпора: Шпоры по вышке

Линейное преобразование – матрица линейного оператора.

Каждому линейному преобразованию соответствует 1 матрица линейного оператора

и наоборот.

Если имеется квадратная матрица Шпора: Шпоры по вышке задано линейное преобразование пространства.

17. Связь между координатами одного и того же линейного оператора в

разных базисах.

Шпора: Шпоры по вышке

Шпора: Шпоры по вышке Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

Т – матрица перехода от e к e’ , то:

Шпора: Шпоры по вышке Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

Если линейный оператор имеет в базисе невырожденную матрицу Т, матрица этого

оператора в любом другом базисе не будет вырождена.

18. Характеристическое уравнение линейного оператора. Собственные

векторы линейного оператора и их свойства.

Если в базисе Шпора: Шпоры по вышке

линейный оператор имеет матрицу А, а в базисе (Шпора: Шпоры по вышке

) оператор имеет матрицу В Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

λ – произвольное число ≠0

Е – единичная матрица

Шпора: Шпоры по вышке

Шпора: Шпоры по вышке Если

характеристически многочлен линейного оператора прировнять к 0, получим

характеристическое уравнение линейного оператора.

Собственные векторы линейного оператора

Ненулевой вектор Шпора: Шпоры по вышке

называется собственным вектором линейного оператора, если Шпора: Шпоры по вышке

оператор к Шпора: Шпоры по вышке , получим

этот же Шпора: Шпоры по вышке ,

умноженный на некоторое к.

к – собственное число оператора А=Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

Каждый собственный вектор имеет единственное собственное число.

Шпора: Шпоры по вышке

19. Прямая в пространстве. Виды уравнений прямой. Угол между прямыми.

Векторное уравнение прямой.

Положение прямой можно задать по точке и направляющему вектору.

Пусть прямая L задана ее точкой M0(x0;y0;z

0) и направляющим вектором S(m;n;p). Возьмем на прямой L точку M(x;y;z).

Обозначим радиус-векторы точек M и M0 через r и r0.

Шпора: Шпоры по вышке

Тогда уравнение прямой запишется в виде: Шпора: Шпоры по вышке

где t – скалярный множитель (параметр).

Параметрические уравнения прямой.

Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

Канонические уравнения прямой.

S(m;n;p) – направляющий вектор прямой L. M0(x0;y0

;z0) – точка на прямой. Шпора: Шпоры по вышке

соединяет M0 с произвольной точкой М.

Шпора: Шпоры по вышке

Уравнение прямой в пространстве, проходящей через две точки.

M1(x1;y1;z1) M2(x2;y2;z2)

В качестве направляющего вектора можно задать вектор Шпора: Шпоры по вышке

Следовательно:

Шпора: Шпоры по вышке , тогда Шпора: Шпоры по вышке

Общее уравнение прямой.

Уравнение прямой как линию пересечения двух плоскостей. Рассмотрим:

Шпора: Шпоры по вышке Шпора: Шпоры по вышке Шпора: Шпоры по вышке

Т.к. прямая перпендикулярна векторам n1 и n2 то

направляющий вектор запишется как векторное произведение:

Шпора: Шпоры по вышке

Угол между прямыми.

Шпора: Шпоры по вышке ;Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

20. Плоскость в пространстве. Виды уравнения плоскостей. Угол между плоскостями.

Уравнение плоскости, проходящей через заданную точку, перпендикулярно данному

вектору.

Пусть плоскость задана точкой M0(x0;y0;z0

) и вектором Шпора: Шпоры по вышке ,

перпендикулярной этой плоскости.

Возьмем произвольную точку M(x;y;z) и составим вектор Шпора: Шпоры по вышке

. При любом расположении точки М на плоскости Q Шпора: Шпоры по вышке

, поэтому Шпора: Шпоры по вышке .

Шпора: Шпоры по вышке

Общее уравнение плоскости.

Шпора: Шпоры по вышке

· Если D=0, то данному уравнению удовлетворяет точка О (0;0;0)

· Если С=0 то вектор Шпора: Шпоры по вышке

. Следовательно, плоскость параллельна оси oz, если В=0 – то oy, если А=0 – то

ox.

· Если C=D=0, то плоскость проходит через О (0;0;0), параллельно оси oz.

Аналогично при A=D=0 и B=D=0.

· Если А=В=0 то уравнение примет вид Шпора: Шпоры по вышке плоскость параллельна плоскости Oxy.

· Если A=B=D=0, то уравнение имеет вид Шпора: Шпоры по вышке . Это уравнение плоскости Oxy.

Уравнение плоскости, проходящей через три точки

К (х1;у1) М (х2;у2) N (x3;y3)

Возьмем на плоскости точку P (x;y;z).

Составим векторы:

Шпора: Шпоры по вышке

Эти векторы лежат в одной плоскости, следовательно они компланарны:

Шпора: Шпоры по вышке

Уравнение плоскости в отрезках.

Пусть плоскость отсекает на осях отрезки, т.е. проходит через точки:

Шпора: Шпоры по вышке ; Шпора: Шпоры по вышке ; Шпора: Шпоры по вышке

Нормальное уравнение плоскости.

Шпора: Шпоры по вышке

21. Угол между прямой и плоскостью. Расстояние от точки до плоскости.

Шпора: Шпоры по вышке

Прямая L: Шпора: Шпоры по вышке

Пусть φ – угол между плоскостью и прямой.

Тогда θ – угол между Шпора: Шпоры по вышке иШпора: Шпоры по вышке .

Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

Найдем Шпора: Шпоры по вышке , если Шпора: Шпоры по вышке

Шпора: Шпоры по вышке , т.к. Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

Расстояние от точки до плоскости.

Дано:

M0 (x0;y0;z0)

Шпора: Шпоры по вышке

Расстояние d от точки М0 до плоскости ∆ равно модулю проекции

вектора Шпора: Шпоры по вышке (где М

1(x1;y1;z­1) - произвольная точка

плоскости) на направление нормального вектора Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

!!!Если плоскость задана уравнением:

Шпора: Шпоры по вышке

то расстояние до плоскости находится по формуле:

Шпора: Шпоры по вышке

22. Прямая на плоскости. Виды уравнений прямой на плоскости. Угол между

двумя прямыми.

Уравнение с угловым коэффициентом.

Шпора: Шпоры по вышке

k= tg α – угловой коэффициент.

Если b=0 то прямая проходит через начало координат. Уравнение примет вид Шпора: Шпоры по вышке

Если α=0, то k = tg α = 0. То прямая пройдет параллельно оси ох. Шпора: Шпоры по вышке

Если α=π/2, то уравнение теряет смысл. В этом случае уравнение примет

вид Шпора: Шпоры по вышке и пройдет

параллельно оси оу.

Общее уравнение прямой.

Шпора: Шпоры по вышке

A, B, C – произвольные числа, причем А и В не равны нулю одновременно.

· Если В=0, то уравнение имеет вид Шпора: Шпоры по вышке

или Шпора: Шпоры по вышке . Это уравнение

прямой, параллельной оси оу. и проходящей через точку Шпора: Шпоры по вышке

· Если В≠0, то получаем уравнение с угловым коэффициентом Шпора: Шпоры по вышке .

· Если А=0, то уравнение имеет вид Шпора: Шпоры по вышке . Это уравнение прямой, параллельной оси ох.

· Если С=0, то уравнение проходит через т. О (0;0).

Уравнение прямой, проходящей через точку, в данном направлении.

т М (х0;у0).

Уравнение прямой записывается в виде Шпора: Шпоры по вышке .

Подставим в это уравнение точку М Шпора: Шпоры по вышке

Решим систему:

Шпора: Шпоры по вышке Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

Уравнение прямой, проходящей через 2 точки.

К (х1;у1) М (х2;у2)

Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

Уравнение прямой в отрезках.

К (а;0); М (0;b)

Подставим точки в уравнение прямой:

Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

Уравнение прямой, проходящей через данную точку, перпендикулярно данному

вектору.

М0 (х0;у0). Шпора: Шпоры по вышке

Возьмем произвольную точку М (х;у).

Шпора: Шпоры по вышке

Т.к. Шпора: Шпоры по вышке , то Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

Нормальное уравнение прямой.

Уравнение прямой можно записать в виде:

Шпора: Шпоры по вышке

Т.к. Шпора: Шпоры по вышке ;Шпора: Шпоры по вышке , то:

Шпора: Шпоры по вышке

Угол между прямыми.

Дано: прямые L1 и L2 с угловыми коэффициентами

Шпора: Шпоры по вышке

Требуется найти угол между прямыми:

Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

23. Эллипс. Определение. Вывод канонического уравнения.

Шпора: Шпоры по вышке Эллипсом называется

геометрическое место всех

точек плоскости, сумма

расстояний от которых до

до фокусов есть величина

постоянная, большая, чем расстояние между фокусами.

Пусть М (х;у) – произвольная точка эллипса.

Т.к. MF1 + MF2 = 2a

Шпора: Шпоры по вышке

Т.к. Шпора: Шпоры по вышке

То получаем Шпора: Шпоры по вышке

Или Шпора: Шпоры по вышке

24. Гипербола. Определение. Вывод канонического уравнения.

Гиперболой называется множество всех точек плоскости, модуль разности

расстояний от каждой из которых до фокусов есть величина постоянная.

Пусть M(x;y) – произвольная точка гиперболы. Тогда согласно определению

гиперболы |MF1 – MF2|=2a или MF1 – MF2

=±2a,

Шпора: Шпоры по вышке

Шпора: Шпоры по вышке Шпора: Шпоры по вышке

25. Парабола. Определение. Вывод канонического уравнения.

Парабола – множество всех точек плоскости, каждая из которых одинаково

удалена от фокуса, и директрисы. Расстояние между фокусом и директрисой

называется параметром параболы и обозначается через р>0.

Шпора: Шпоры по вышке Пусть M(x;y) – произвольная

точка M с F. Проведем отрезок

MN перпендикулярно

директрисе. Согласно

определению MF=MN.

Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

26. Поверхности вращения.

Поверхность, образованная вращением некоторой плоской кривой вокруг оси,

лежащей в ее плоскости, называется поверхностью вращения. Пусть некоторая

кривая L лежит в плоскости Oyz. Уравнение этой кривой запишутся в виде:

Шпора: Шпоры по вышке

Шпора: Шпоры по вышке Найдем уравнение поверхности, образованной вращением кривой L вокруг оси Oz.

Возьмем на поверхности точку

M (x;y;z). Проведем через точку

М плоскость, перпендикулярную

оси oz, и обозначим точки

пересечения ее с осью oz

и кривой L соответственно O1 и N.

Обозначим координаты точки

N (0;y1;z1). Отрезки O1M и O1N

являются радиусами одной и той же окружности. Поэтому O1M = O1

N. Но O1M = (x2+y2)0.5, O1

N=|y1|.

Следовательно, |y1|=(x2+y2)0.5 или y1=±(x2+y2)0.5. Кроме того, очевидно, z1=z.

Следовательно Шпора: Шпоры по вышке

искомое уравнение поверхности вращения, ему удовлетворяют координаты любой

точка М этой поверхности и не удовлетворяет координаты точек, не лежащих на

поверхности вращения.

27. Поверхности 2-го порядка. Эллипсоид, Гиперболоид.

Эллипсоид.

Шпора: Шпоры по вышке

Рассмотрим сечение поверхности с плоскостями, параллельными xOy. Уравнения

таких плоскостей z=h, где h – любое число. Линия, получаемая в сечении,

определяется двумя уравнениями:

Шпора: Шпоры по вышке

Если |h|>c, c>0, то Шпора: Шпоры по вышке точек пересечения поверхности с плоскостями z=h нет.

Если |h|=c, т.е. h=±c, то Шпора: Шпоры по вышке

. Линия пересечения вырождается в две точки (0;0;с) и (0;0;-с). Плоскости z=c и

z=–c касаются поверхности.

Если |h|<c, то уравнения можно переписать в виде: Шпора: Шпоры по вышке

Линия пересечения есть эллипс с полуосями.

Эллипсоид – замкнутая овальная поверхность, где a,b,с – полуоси. Если все

они различны, то эллипсоид называется трехосным. Если какие-либо две

полуоси равны, то тело называется эллипсоид вращения, если a=b=c, то тело

называется сферой x2+y2+z2=R2

Однополостный гиперболоид.

Шпора: Шпоры по вышке

Пересекая поверхность плоскостью z=h, получим линию пересечения, уравнения

которой имеют вид.

Шпора: Шпоры по вышке Шпора: Шпоры по вышке

Полуоси достигают своего наименьшего значения при h=0, a1=a, b1

=b. При возрастании |h| полуоси будут увеличиваться.

Если пересекать поверхность плоскостями x=h или y=h, то в сечении получим

гиперболы. Найдем линию пересечения поверхности с плоскостью Oyx, уравнение

которой x=0. Эта линия пересечения описывается уравнениями:

Шпора: Шпоры по вышке

Поверхность имеет форму бесконечно расширяющейся трубки и называется

однополостным гиперболоидом.

Двуполостный гиперболоид.

Шпора: Шпоры по вышке

Если поверхность пересечь плоскостями z=h, то линия пересечение уравнениями

Шпора: Шпоры по вышке

Если |h|<c, то плоскости z=h не пересекаются.

Если |h|=c, то плоскости h=±c касаются данной поверхности соответственно в

точках (0;0;с) и (0;0;-с).

Если |h|>c, то уравнения можно переписать в виде: Шпора: Шпоры по вышке

Эти уравнения определяют эллипс, полуоси которого возрастают с ростом |h|.

У обеих гипербол действительной осью является ось oz. Метод сечения позволяет

изобразить поверхность, состоящую из двух полостей, имеющих форму двух

неограниченных чаш. Поверхность называется двуполостным гиперболоидом.

28. Поверхности 2-го порядка. Параболоиды.

Эллиптический.

При пересечении поверхности координатами плоскостями Oxz и Oyz получается

соответственно параболы Шпора: Шпоры по вышке

и Шпора: Шпоры по вышке . Таким образом,

поверхность, определяемая уравнением, имеет вид выпуклой, бесконечно

расширяющейся чаши.

Шпора: Шпоры по вышке

Гиперболический.

Шпора: Шпоры по вышке

Рассечем поверхность плоскостями z=h. Получим кривую

Шпора: Шпоры по вышке

которая при всех h≠0 является гиперболой. При h>0 ее действительные оси

параллельны оси Ox, при h<0 – параллельные оси Oy. При h=0 линия

пересечения распадается на пару пересекающихся прямых:

Шпора: Шпоры по вышке

При пересечении поверхности плоскостями, параллельности плоскости Oxz (y=h),

будут получаться параболы, ветви которых направлены вверх.

Шпора: Шпоры по вышке

29. Поверхности 2-го порядка. Конусы и цилиндры.

Конус.

Поверхность, образованная прямыми линиями, проходящими через данную точку Р и

пересекающими данную плоскую линию L (не проходящую через Р) называется

конической поверхностью или конусом. При этом линия L называется

направляющей конуса, точка Р – ее вершиной, а прямая, описывающая

поверхность, называется образующей.

Шпора: Шпоры по вышке - уравнение конуса

Цилиндр.

Поверхность, образованная движением прямой L, которая перемещается в

пространстве, сохраняя постоянное направление и пересекая каждый раз некоторую

кривую К, называется цилиндром. При этом кривая К называется

направляющей цилиндра, а прямая L – образующая.

Шпора: Шпоры по вышке - уравнение цилиндра

30. Исследование кривой второго порядка по ее уравнению без

произведения координат.

Уравнение вида Ax2+Cy2+2Dx+2Ey+F=0 всегда определяет либо

окружность (при А=С), либо эллипс (при А*С>0), либо гиперболу (при

А*С<0), либо параболу (при А*С=0), при этом возможны случаи вырождения: для

эллипса (окружности) – в точку или мнимый эллипс (окружность), для гиперболы –

в пару пересекающихся прямых, для параболы – в пару параллельных прямых.

Общее уравнение второй степени с двумя неизвестными: Ax2+2Bxy+Cy2+2Dx+2Ey+F=0

Коэффициент В с произведением координат преобразовывает уравнение путем

поворота координатных осей.

31. Определение предела числовой функции. Односторонние пределы.

Свойства пределов.

Число А называется пределом функции y=f(x) в точке х0, если для любой

последовательности допустимых значений аргумента xn, n€N (xn

≠x0), сходящейся к х0

(т.е. Шпора: Шпоры по вышке ),

последовательность соответствующих значений функции f(xn), n€N,

сходится к числу А, т.е. Шпора: Шпоры по вышке

. Геометрический смысл предела этой функции, что для всех точек х, достаточно

близких к точке х0, соответствующие значения функции как угодно мало

отличается от числа А.

Односторонние пределы.

Считается, что х стремится к х0 любым способом: оставаясь меньшим,

чем х0 (слева от х0), большим, чем х0 (справа

от х0), или колеблясь около точки х0.

Число А1 называется пределом функции y=f(x) слева в

точке х0, если для любого ε<0 существует число

σ=σ(ε)>0 такое, что при х€(x0-σ;x0

), выполняется неравенство |f(x)-A1|<ε Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

Пределом функции справа называется

Шпора: Шпоры по вышке

Свойства пределов.

1) если предел Шпора: Шпоры по вышке функция равна этому числу плюс б.м.

Шпора: Шпоры по вышке

ε – сколь угодно малое число

|f(x)-a|=α; f(x)=a+ α

2) сумма конечного числа б.м. чисел есть б.м. число

3) предел произведения равен произведению пределов

4) константы можно выносить за знак предела

5) Шпора: Шпоры по вышке

Шпора: Шпоры по вышке 32. Замечательные пределы.

1 замечательный предел.

Шпора: Шпоры по вышке

Возьмем круг радиуса 1, обозначим

радианную меру угла MOB через Х.

Пусть 0 < X < π/2. На рисунке |АМ| = sin x, дуга МВ численно равна

центральному углу Х, |BC| = tg x. Тогда

Шпора: Шпоры по вышке

Разделим все на Шпора: Шпоры по вышке и получим:

Шпора: Шпоры по вышке

Т.к. Шпора: Шпоры по вышке , то по признаку существования пределов следует Шпора: Шпоры по вышке .

2 замечательный предел.

Шпора: Шпоры по вышке

Пусть х→∞. Каждое значение х заключено между двумя положительными

целыми числами:

Шпора: Шпоры по вышке

Если x→∞, то n→∞, тогда

Шпора: Шпоры по вышке

По признаку о существовании пределов:

Шпора: Шпоры по вышке

33. Непрерывные функции и их свойства. Точка разрыва функций и их классификация.

Пусть функция y=f(x) определена в точке х0 и в некоторой окрестности

этой точки. Функция y=f(x) называется непрерывной в точке х0, если

существует предел функции в этой точке и он равен значению функции в этой

точке:

Шпора: Шпоры по вышке

Это означает:

- функция определена в точке х0 и в ее окрестности;

- функция имеет предел при х→х0

- предел функции в точке х0 равен значению функции в этой точке, т.е.

выполняется равенство.

Это означает, что при нахождении предела непрерывной функции f(x) можно перейти

к пределу под знаком функции, то есть в функции f(x) вместо аргумента х

подставить предельное значение х0

Точки разрыва функции – это точки в которых нарушается непрерывность функции.

Точка разрыва х0 называется точкой разрыва 1 рода

функции y=f(x), если в этой точке существуют конечные пределы функции слева и

справа (односторонние пределы)

Шпора: Шпоры по вышке и Шпора: Шпоры по вышке

При этом, если:

- А1=А2 то точка х0 называется точкой устранимого разрыва;

- А1≠А2 то точка х0 называется точкой конечного разрыва.

|A1 – A2| называется скачком функции.

Точка разрыва х0 называется точкой разрыва 2 рода

функции y=f(x), если по крайней мере один из односторонних пределов (слева или

справа) не существует, либо равен бесконечности.

34. Производная от функции. Дифференцируемость функции. Дифференциал.

Производной функции y=f(x) в точке х0 называется предел отношения

приращения функции к приращению аргумента, когда аргумент стремится к нулю.

Шпора: Шпоры по вышке

Производная функции f(x) есть некоторая функция

f ’(x), произведенная из данной функции.

Функция y=f(x), имеющая производную в каждой точке интервала (a;b) называется

дифференцируемой в этом интервале.

Операция нахождения производной называется дифференцированием.

Дифференциал функции y=f(x) в точке х называется главная часть ее

приращения, равная произведению производной функции на приращение аргумента, и

обозначается dy (или df(x) ).

Иначе. Дифференциал функции равен произведению производной этой

функции на дифференциал независимой переменной.

35. Правила дифференцирования суммы, произведения, частного функции.

Производные сложных функций.

Шпора: Шпоры по вышке

Для нахождения производной сложной функции надо производную данной функции по

промежуточному аргументу умножить на производную промежуточного аргумента по

независимому аргументу.

Производная обратной функции равна обратной величине производной данной функции.

Шпора: Шпоры по вышке

Шпора: Шпоры по вышке

36. Логарифмическое дифференцирование.

Логарифмическое дифференцирование - в некоторых случаях целесообразнее

функцию сначала прологарифмировать, а результат продифференцировать.

Шпора: Шпоры по вышке

Однако производные степенных функций находят только логарифмическим

дифференцированием.

Производная степенно-показательной функции равна сумме производно

показательной функции, при условии U=const, и производной степенной функции,

при условии V=const.

Шпора: Шпоры по вышке

37. Теоремы о среднем. Правило Лопиталя.

Рассмотрим способ раскрытия неопределенностей 0 / 0 и ∞ / ∞

, который основан на применении производных.

Правило Лопиталя, при 0 / 0.

Пусть функции f(x) и φ(x) непрерывны и дифференцируемы в окрестности

точки x0 и обращается в нуль в этой точке: Шпора: Шпоры по вышке

.

Пусть φ ′(x) ≠ 0 в окрестности точки x0

Если существует предел

Шпора: Шпоры по вышке , то Шпора: Шпоры по вышке

Применим к функциям f(x) и φ(x) теорему Коши для отрезка [x0;x],

лежащего в окрестности точки x0 , тогда

Шпора: Шпоры по вышке , где с лежит между x0 и х.

Шпора: Шпоры по вышке

При x→x0 величина с также стремится к х0; перейдем

в предыдущем равенстве к пределу:

Шпора: Шпоры по вышке

Так как Шпора: Шпоры по вышке , то Шпора: Шпоры по вышке .

ПоэтомуШпора: Шпоры по вышке

(предел отношения двух бесконечно малых равен пределу отношения их

производных, если последний существует)

Правило Лопиталя, при ∞ / ∞.

Пусть функции f(x) и φ(x) непрерывны и дифференцируемы в окрестности

точки x0 (кроме точки x0), в этой окрестности

Шпора: Шпоры по вышке

Если существует предел

Шпора: Шпоры по вышке , то Шпора: Шпоры по вышке

Неопределенности вида 0∙∞ ; ∞-∞ ; 1∞ ;

∞0 ; 00 сводятся к двум основным.

Например, 0∙∞

Пусть f(x)→0, φ(x)→∞ при х→х0

Шпора: Шпоры по вышке

38. Дифференциалы высших порядков.

Пусть y=f(x) дифференцируема функция, а ее аргумент х – независимая

переменная. Тогда дифференциал dy=f ′(x)dx есть также функция х, можно

найти дифференциал этой функции. Дифференциал от дифференциала есть второй

дифференциал.

Производную можно рассматривать, как отношение дифференциала соответствующего

порядка к соответствующей степени дифференциала независимой переменной.

Шпора: Шпоры по вышке Дифференциал n-ого порядка,

есть дифференциал от дифференциала (n-1)-ого порядка, т.е. производную функции

можно рассматривать, как отношение ее дифференциала соответствующего порядка к

соответствующей степени дифференциала независимой переменной.

39. Исследование условий и построение графиков.

- найти область определения функции

- найти точки пересечения графика с осями координат

- найти интервалы знака постоянства

- исследовать на четность, нечетность

- найти асимптоты графика функции

- найти интервалы монотонности функции

- найти экстремумы функции

- найти интервалы выпуклости и точки перегиба

рефераты Рекомендуем рефератырефераты

     
Рефераты @2011