15. Классификация т-ки разрыва Все т-ки р-рыва делятся на 3 вида: т. устранимого р-рыва; точки р-рыва 1-го , и 2-го рода. а) если в т-ке х0 $ оба односторонних предела, которые совпадают между собой f(x0+)= f(x0-), но ¹ f(x0), то такая т-ка наз-ся точкой устранимого р-рыва. Если х0 т-ка устранимого р-рыва, то можно перераспределить ф-цию f так чтобы она стала непр. в т-ке х0. Если по ф-ции f построить новую ф-цию положив для нее знач. f(x0)= f(x0-)=f(x0+) и сохранить знач. в др. т-ках, то получим исправл. f. б) если в т-ке х0 $ оба 1-стороних предела f(x0±), которые не равны между собой f(x0+)¹f(x0-), то х0 наз-ся т-кой р-рыва первого рода. в) если в т-ке х0 хотя бы 1 из односторонних пределов ф-ции не $ или бесконечен, то х0 наз-ся т-кой р-рыва 2-го рода. При исслед. Ф-ции на непр. классификации возможных т-к р-рыва нужно применять во внимание сл. замечания: 1) Все элементарные ф-ции непрер. во внутренних т-ках своих областей определения => при исл. элементарных ф-ций нужно обращать внимание на гранич. т-ки обл-ти опр-ния. 2) Если ф-ция задана кусочно, т.е. различными соотношениями на частях своей обл. опр., то подозрительными на разрыв явл. граничные т-ки частей обл-ти опр. 3) Св-ва непр. ф-ций. Многие св-ва непр. ф-ций легко понять опираясь на их геометр. св-ва: график непр. ф-ции на пр-ке D представляет сплошную(без р-рывов) кривую на пл-тях и след-но может отображена без отрыва ручки от бумаги. I) Ф-ция непр. в т-ке х0 обязательно ограничена в окрестностях этой т-ки.(св-во локал. огранич-ти) Док-во использует опр-ние на языке e и d. Если f непр. в т-ке х0 то взяв любое e>0 можно найти d>0 ½f(x)-f(x0)½<e при ½х-х0½<d ~ f(x0)-e<f(x)<f(x0)+e в окрестности в т-ке х0. II) Св-ва сохранения знака Если f(x) непр. в т-ке х0 и f(x0)¹0 то $ окрестность этой т-ки в которой ф-ция принимает тот же знак что и знак х0. III)Теорема о промежуточных знач. ф-ции f(x) непр. на отрезке [a,b] и f(a)=A, f(b)=B причем A¹B => CÎ(A,B) $ cÎ(a,b):f(c)=C f(c)=f(c‘)=f(c‘‘). IV)Теорема о прохожд. непр. ф-ции через 0. Если f(x) непр. на отрезке (a,b) и принимает на концах этого отрезка значение разных знаков f(a) f(b), то $ т-ка сÎ(a,b). Док-во Одновременно содержит способ нах-ния корня ур-ния f(x0)=0 методом деления отрезка пополам. f(d)=0 c=d Т-ма доказана. Пусть f(d)¹0 [a,d] или [d,b] ф-ция f принимает значение разных знаков. Пусть для определ-ти [a,d] обозначим через [a1,b1]. Разделим этот отрезок на 2 и проведем рассуждение первого шага док-ва в итоге или найдем искомую т-ку d или перейдем к новому отрезку [a2,d2] продолжая этот процесс мы получим посл-ть вложения отрезков [a1,b1]>[a2,b2] длинна которых (a-b)/2^n®0, а по т-ме о вл-ных отрезков эти отрезки стягиваются к т-ке с. Т-ка с явл. искомой с:f(c)=0. Действительно если допустить, что f(c)¹0 то по св-ву сохр. знаков в некоторой d окрестности, т-ке с f имеет тот же знак что и значение f(c) между тем отрезки [an,bn] с достаточно N попабают в эту окрестность и по построению f имеет разный знак на концах этих отрезков. Непр. ф-ции на пр-кеf непр. в т-ке х0 => f непрер. в т-ке х0 и f(x0)¹0 => f непр. на [a,b] и f(x)*f(b)=0 (f(x)*f(b)>0 в окр-ти х0) => $ сÎ(a,b). f(c)=0 сл-но 2 св-ва непр. ф-ции на отрезке обоснованны. Т-ма 1(о огран. непр. ф-ции на отрезке). Если f(x) непр. на [a,b], тогда f(x) огран. на этом отрезке, т.е. $ с>0:½f(x)½£c "xÎ(a,b). Т-ма 2( о $ экстр. непр. ф-ции на отр.). Если f(x) непр. на [a,b], тогда она достигает своего экстр. на этом отрезке, т.е. $ т-ка max X*:f(x*)³f(x) "xÎ[a,b], т-ка min X_:f(x_)£f(x) "xÎ[a,b]. Теорема ВЕЙЕРШТРАССА. Эти теремы неверны если замкнутые отрезки заменить на др. пр-ки Контрпример 1. f(x)=1/2 на (0;1] ® f – неогр. на (0;1] хотя и непрерывны. Контрпример 2. f(x)=x; на (0;1) f(x) – непр. inf(xÎ(0;1))x=0, но т-ки x_Î(0;1):f(x_)=0, т-ки x*, хотя sup(xÎ(0;1))x=1 Док-во т-мы 1. Используем метод деления отрезка пополам. Начинаем от противного; f неогр. на [a,b], разделим его, т.е. тогда отрезки [a;c][c;b] f(x) неогр. Обозн. [a1,b1] и педелим отрез. [a2,b2], где f-неогр. Продолжая процедуру деления неогр. получаем послед. влож. отрезки [an;bn] котор. оттяг. к т-ке d (d=c с надстройкой) из отрезка [a,b], общее для всех отр. Тогда с одной стороны f(x) неогр. в окр-ти т-ки d на конц. отрезка [an,bn], но с др. стороны f непр. на [a,b] и => в т-ке d и по св-ву она непр. в некоторой окрестности d. Оно огран. в d => получаем против. Поскольку в любой окр-ти т-ки d нах-ся все отрезки [an;bn] с достаточно большим 0. Док-во т-мы 2. Обозначим E(f) – множиством значений ф-ии f(x) на отр. [a,b] по предыд. т-ме это мн-во огран. и сл-но имеет конечные точные грани supE(f)=supf(x)=(при хÎ[a,b])=M(<¥). InfE(f)= inff(x)=m(m>-¥). Для опр. докажем [a,b] f(x) достигает макс. на [a,b], т.е. $ х*:f(x)=M. Допустим противное, такой т-ки не $ и сл-но f(x)<M "xÎ[a,b] рассмотрим вспомогат. ф-цию g(x)=1/(M-f(x) при хÎ[a,b]. g(x) – непр. как отношение 2-х непр. ф-ций и то знач. 0 согластно т-ме 1 g(x)- огран. т.е. $ c>0 !0<g(x)£c g³0, на [a,b] – 1/(M-f(x))£c => 1£c(M-f(x)) => f(x) £M-1/c "xÎ[a,b] Однако это нер-во противор., т.к. М-точная верхн. грань f на [a,b] а в правой части стоит “C” Следствие: если f(x) непр. [a,b]тогда она принимает все знач. заключ. Между ее max и min, т.е. E(f)=[m;M], где m и M –max и min f на отрезке. | 16. Дифференцирование ф-ций Центральная идея диффер. ф-ций явл-ся изучение гладких ф-ций (без изломов и р-рывов кривые) с помощью понятия пр-ной или с помощью линейных ф-ций y=kx+b обладает простейшими наглядн. ф-циями; у=k‘ => k>0 то у возр. при всех х, k<0-то у убыв. при всех х, k=0 – ф-ция постоянна Определение пр-ной1) Пусть ф-ция y=f(x) определена по крайней мере в окр-тях т-ки х0, таким приращения Dх эл-нт. Составим соотв. ему приращения ф-ции т-ки х0. Dy=Df(x0)=f(x0+Dx)-f(x0) Образуем разностное отношение Dy/Dx=Df(x0)/Dx (1) (это разностное отношение явл. ф-цией Dх, т.к. х0-фиксирована, причем при Dх®0 мы имеем дело с неопр. 0/0). Опр. Пр-ной ф-ции y=f(x) наз-ся предел разностного отношения 1 (при условии если он $), когда Dх®0. Производная это предел отношения приращения в данной т-ке к приращению аргумента при усл., что посл-ть ® к 0. Эта производная обозначается через df(x0)/dx или f‘(x0), у‘ (если данная т-ка х0 подразумевается или же речь идет о пр-ной в любой текущей т-ке х. Итак согласно определению f‘(x0)=lim(Dx®0) (f(x0+Dx)-f(x0))/Dx (2) Если ф-ция f(x) имеет в т-ке х0 пр-ную, т.е. предел в правой части (2) $, то говорят что f(x) дифференц. в т-ке х0. 2) Непрерывность и дифференцируемость Т-ма. Если ф-ция f(x) дифференц. в т-ке х0 то она непрерывна в этой т-ке, причем имеет место разложения Df в т-ке х0 Df(x0)=f(x0+Dx)-f(x0)= f‘(x0)Dx+a(Dx)Dx (3), где a(Dx)-б/м ф-ия при Dх®0 Док-во. Заметим, что разложение (3) верно, что из него сразу следует что при Dх®0 Df(x0)®0, => в т-ке х0 ф-ция непр. Поэтому осталось док-ть рав-во (3). Если пр-ная $ то из определения (2) и связи предела с б/м =>, что $ б/м ф-ция a(Dх) такая что Df(x0)/Dx=f‘(x0)+a(Dx) отсюда рав-во (3) пол-ся умножением на Dx. Примеры. 1)Пр-ная постоянная и ф-ция равна 0, т.е. y=c=const "x, тогда y‘=0 для "х. В этом случае Dy/Dx числитель всегда равен пустому мн-ву, сл-но это отношение равно 0, => значит эго отн-ние = 0. 2)Пр-ная степенной ф-ции, у=х^k, y‘=kx^(k-1) " kÎN. Док-м для к=0 исходя из опр-ния пр-ной. Возьмем " т-ку х и дадим приращение Dх составим разностное отношение Dу/Dх=(х+Dх)^2-x^2/Dx=2х+ Dх => lim(Dx®0)Dy/Dx=2x=y‘. В дейст-ти док-ная ф-ла р-раняется для любых к. 3)Пр-ная экспон-ной ф-ции, у=е^x => y‘=e^x. В данном случае Dy/Dx=(e^x+Dx-e^x)/Dx=e^x(e^Dx-1)/ Dx. Одеако предел дробного сомножителя = 1. 4)y=f(x)=½x½=(x, x>0;-x,x<0). Ясна что для " х¹0 производная легко нах-ся, причем при y‘=1при x>0 y‘=-1 при x<0. Однако в т-ке x=0 пр-ная не $. Причина с геом т-ки зрения явл. невозможность проведения бесисл. мн-во кассат. к гр-ку ф-ции. Все кассат. имеют угол от [-1,+1], а с аналит. т-ки зрения означает что прдел 2 не $ при x0=0. При Dx>0 Dy/Dx=Dx/Dx=1=>lim(Dx®0,Dx>0)Dy/Dx=1 А левый предел разн-го отн-ния будет –1. Т.к. одностор. пред. Не совпадают пр-ная не $. В данном случае $ одностор. пр-ная. Опр. Правой(левой) пр-ной ф-ции в т-ке х0, наз-ся lim отношения (2) при усл. что Dх®0+(Dх®0-). Из связи вытекает утвержд., если f(x) дифференц. в т-ке х0, то ее одностор. пр-ная также $ и не совпадает f‘(x0-) и f‘(x0+) обратно для $ пр-ной f‘(x0) необходимо, чтобы прав. и лев. пр-ные совпад. между собой. В этом случае они не совпад. 17. Пр-ные и дифференциалы выс. Порядков. Пр-ная f‘(x) – первого порядка; f‘‘(x) – второго; f‘‘‘(x)-третьего; fn(x)=(f(n-1)(x))‘. Пр-ные начиная со второй наз-ся пр-ными выс. порядка. Дифференциал выс. порядковdy= f‘(x)dx – диф. первого порядка ф-ции f(x) и обозначается d^2y, т.е. d^2y=f‘‘(x)(dx)^2. Диф. d(d^(n-1)y) от диф. d^(n-1)y наз-ся диф. n-ного порядка ф-ции f(x) и обознач. d^ny. Теорема Ферма. Пусть ф-ция f(x) определена на интервале (a,b) и в некоторой т-ке х0 этого интервала имеет наибольшее или наименьшее знач. Тогда если в т-ке х0 $ пр-ная, то она = 0, f‘(x0)=0. 2)Теорема Ролля. Пусть на отрезке [a,b] определена ф-ция f(x) причем: f(x) непрерывна на [a,b]; f(x) диф. на (a,b); f(a)=f(b). Тогда $ т-ка сÎ(a,b), в которой f‘(c)=0. 3)Теорема Логранджа. Пусть на отрезке [a,b] определена f(x), причем: f(x) непр. на [a,b]; f(x) диф. на [a,b]. Тогда $ т-ка cÎ(a,b) такая, что справедлива ф-ла (f(b)-f(a))/b-a= f‘(c). 4)Теорема Коши. Пусть ф-ции f(x) и g(x) непр. на [a,b] и диф. на (a,b). Пусть кроме того, g`(x)¹0. Тогда $ т-ка сÎ(a,b) такая, что справедл. ф-ла (f(b)-f(a))/(g(b)-g(a))=f‘(c)/g‘(c). Правило Лопиталя. Раскрытие 0/0. 1-е правило Лопиталя. Если lim(x®a)f(x)= lim(x®a)g(x), то lim(x®a)f(x)/g(x)= lim(x®a)f‘(x)/g‘(x), когда предел $ конечный или бесконечный. Раскрытие ¥/¥. Второе правило. Если lim(x®a)f(x)= lim(x®a)g(x)=¥, то lim(x®a)f(x)/g(x)= lim(x®a)f‘(x)/g‘(x). Правила верны тогда, когда x®¥,x®-¥,x®+¥,x®a-,x®a+. Неопред-ти вида 0¥, ¥-¥, 0^0, 1^¥, ¥^0. Неопр. 0¥, ¥-¥ сводятся к 0/0 и ¥/¥ путем алгебраических преобразований. А неопр. 0^0, 1^¥, ¥^0 с помощью тождества f(x)^g(x)=e^g(x)lnf(x) сводятся к неопр вида 0 | Выпуклые и вогнутые ф-ции Для хар-ки скорости возр. или убыв. ф-ции, а также крутезны гр-ка ф-ции на участке монотонности вводится понятия вогн. вып-ти ф-ции на интервале, частности на всей числ. приямой. Пр-р. Пусть ф-ция явл-ся пр-ной ф-цией некоторой фирмы, напр. объем вып-ка продукции, а арг. х-числ. раб. силы. Хар-ный график этой ф-ции имеет сл. вид у f(x) возр. для x>0. На инт. От (0,a) ф-ция возр. все быстрее. Его можно р-ривать, как этап образования фирмы вначале которого выпуск растет медленно, поскольку первые рабочие не прошли период адаптации, но с теч. времени эффект привл. доп. раб. рабочих становится все больше, и соотв. ув-ся крутизна графика. На (¥,a) ф-ция возр. все медл. и гр. становится все более пологой. а – это пороговое знач. числ. раб. силы начиная с которого привл. доп. раб. силы начиная с которого привл. раб. силы дает все меньший эффект в объемке вып-ка. А(х) возр. f‘(x)>0 $x³0, но на интервале от 0 до а (0;а) f‘(x) возр. в то время как (0;¥) f‘ убыв., а в т-ке а-max. По критерию монотонности это означает на (0;а) f‘‘(x)³0 (f-выпукла), а на (a;¥) f‘‘(x)£0 (f-вогнута). Опр. Пусть f(x) дважды диф. ф-ция на (a,b), тогда: 1)назовем ф-цию f(x) выпуклой(вогн) на интервале (a,b), если 2-я пр-ная не отриц, т.е. f‘‘(x)³0 (f‘‘(x)£0) на (a,b) 2)Если в пункте 1 вып-ся строгие нер-ва 2-й пр-ной, то ф-ция наз-ся строго выпуклой(вогнутой) на интервале (a,b) Т-ки перегиба Опр. Т-ки разд. интервалы строгой выпуклости и строгой вогнутости наз-ся т-ми перегиба т. х0 есть т-ка перегибы, если f‘‘(x0)=0 и 2-я пр-ная меняет знак при переходе через х0=> в любой т-ке перегиба f‘(x) имеет локальный экстремум. Геометр. т-ка перегиба хар-ся тем что проведенная касат. в этой т-ке имеет т-ки графика по разные стороны. Выпуклость и вогнутость. Опр. Ф-ция явл. выпуклой (вогнутой) на (a,b) если кассат. к граф-ку ф-ции в любой т-ке интервала, лежит ниже (выше) гр. ф-ции. y=y0+f‘(x0)(x-x0)=f(x0)+f‘(x0)(x-x0) – линейная ф-ция х, который не превосходит f(x) и не меньше f(x) в случае вогнутости неравенства хар-щие выпуклость (вогнутость) через диф. f(x)³f(x0)+ f‘(x0)(x-x0) " x,x0Î(a;b) f вогнута на (а,b). Хорда выше (ниже), чем график для вып. ф-ций (вогн.) линейная ф-ция kx+b, в частности постоянна, явл. вып. и вогнутой. Б/б пол-тиПосл-ть {xn} наз-ся б/б, если для " пол-ного числа А $ номер N такой, что при n>N вып-ся нер-во ½xn½>A Возьмем любое число А>0. Из неравенства ½xn½=½n½>A получаем n>A. Если взять N³А, то " n>N вып-ся ½xn½>A, т.е. посл-ть {xn} б/б. Замечание. Любая б/б посл-ть явл. неограниченной. Однако неогранич. Посл-ть может и не быть б/б. Например 1,2,1,3,1,.,1,n. не явл. б/б поскольку при А>0 нер-во ½xn½>A не имеет места " xn с нечет. номерами. Гладкая ф-цияСл. ф-ция f(x) тоже явл. гладкой, т.е. f‘ $ и непрерывна причем имеет место сл. ф-ла F‘(x)=f‘(j(x))*j‘(x) (4). Используя ф-лу (4) получаем y‘=(lnf(a))‘=f‘(x)/f(x) (5) – логарифмической пр-ной. Правая часть это скорость изменения у (ф-ция f(x)) приходится на ед-цу абсол. значения этого пок-ля поэтому логарифм. Произв. наз-ют темпом прироста показателя y или f(x). Пусть известна динамика изменения цены на некотором интервале, причем P(t) гладкая ф-ция. Что можно назвать темпом роста этой ф-ции, при t=R. Темп роста¹приросту. Пр-р y=e^ax. Найдем темп прироста. f‘/f=темп прироста=ae^ax/e^ax=a. Экспонициальная ф-ция имеет постоянный темп прироста. Эластичность ф-цийОпр. Пусть гладкая ф-ция y=f(x) описывает изменение экономической переменной у от эк. пер. х. Допустим f(x)>0 => имеет смысл лог. пр-ная. Эл-ностью ф-ции f(x) или у наз-ся сл-щая вел-на опред-мая с помощью лог. пр-ной. Ef(x)=x*f‘(x)/f(x)=x(lnf(x))‘ (6). Выясним эк. смысл этого показателя для этого заменим в (6) пр-ную ее разностным отношением Df(x0)/Dx и будем иметь Ef(x)»x(Df(x)/Dx)/f(x)=(Df(x)/f(x))/(Dx/x). В числителе стоит относит. Прирост ф-ции f в т-ке x, в знаменателе относ. прир. аргумента. => эл-ность ф-ции показывает на сколько % изменяется пок-ль y=f(x) при изменении перем. х на 1%. Эластичность – пок-ль реакции 1-й переменной на изменение другой. Пр-р. р-рим ф-цию спроса от цены, пусть D=f(p)=-aP+b – линейная ф-ция спроса, где а>0. Найдем эластичность спроса по цене. Ed(P)=P*D‘/D=P*(-a)/(-aP+b)=aP/(aP-b)=> эл-ность линейной ф-ции не постоянна | Применение 1й пр-ной в исслед. ф-цийВсе применения базируются на опред-нии пр-ной, как предела разностного отношения, а также на сл-щей т-ме. Т-ма Ферма. Если диф. на интервале (a,b) f(x) имеет в т-ке ч0 локальный экстремум, то пр-ная этой ф-ции обращается в 0, т.е. f‘(x0)=0 (8). Это необходимое усл. локал. экстр., но недостаточное. Опр. Все т-ки в которых пр-ная ф-ции f(x) обращается в 0 наз-ся крит. т-ми f(x). Из т-мы Ферма => экстремум надо искать только через крит. т-ки. Т-ма Коши. Пусть ф-ции f(x) и g(x) непрерывны на [a,b] и диф. на (a,b). Пусть кроме того, g‘(x)¹0, тогда $ т-ка cÎ(a,b) такая, что справедлива ф-ла (f(b)-f(a))/(g(b)-g(a))=f‘(c)/g‘(c) Интервалы монотонности ф-цииТ-ма. Пусть f(x) диффер. На интервале (a,b), тогда справедливы сл. утверждения f(x) монотонно возр. (убывает) на интервале (a,b) тогда, когда f‘(x)³0 на интервале (a,b) и f‘(x)>0 (f‘(x)<0), то строго возр. (убыв) на (a,b). хÎ интерв. монотонно убывает, касательная имеет тупой угол наклона f‘(x1)<0 для x2 противоположная ситуация. Т-ма Логранджа. Пусть ф-ция f(x) непрер. на отрезке [a,b] и диф. на интервале (a,b), тогда " т. х и x+Dx Î [a,b] $ т-ка С лежащая между х и х+Dх такая что спаведлива ф-ла (f(x+Dx)-f(x))=f(c)*Dx (7) => при сравнении с ф-лой приращения ф-ций с диф. заметим, что (7) явл. точной ф-лой, однако теперь пр-ная фолжна считаться в некоторой средней т-ке С «алгоритм» выбора которой неизвестен. Крайнее значение (a,b) не запрещены. Придадим ф-ле (7) классический вид => x=a x+Dx=b+> тогда ф-ла (7)=(f(b)-f(a))/(b-a)=f‘(c) (7‘) – ф-ла конечных приращений Логранджа. (f(b)-f(a))/(b-a)=f‘(c) (1) Док-во сводится к сведению к т-ме Ролля. Р-рим вспом. ф-цию g(x)=f(x)-f(a)-(f(b)-f(a))/(b-a) * (x-a) Пусть ф-ция g(x) удовл. всем усл. т-мы Ролля на [a,b] А)Непрерывна на [a,b] Б) Дифференц. на (a,b) В) g(a)=g(b)=0 Все усл. Ролля соблюдены, поэтому $ т-ка С на (a,b) g‘(c)=0 g‘(c)=f‘(x)-(f(b)-f(a))/(b-a). Ф-ла (1) наз-ся ф-лой конечных приращений. Т-ма Ролля. Пусть ф-ция f(x) удовл. сл. усл. А)Непрерывна на [a,b] Б) Дифференц. на (a,b) В) принимает на коцах отрезков равные значения f(a)=f(b), тогда на (a,b) $ т-ка такая что f‘(c)=0, т.е. с-крит. т-ка. Док-во. Р-рим сначала, тривиальный случай, f(x) постоянная на [a,b] (f(a)=f(b)), тогда f‘(x)=0 $ x Î (a,b), любую т-ку можно взять в кач-ве с. Пусть f¹ const на [a,b], т.к. она непрер. на этом отрезке, то по т-ме Вейерштрасса она достигает своего экстрем. на этом отрезке и max и min. Поскольку f принимает равные знач. в гранич. т-ках, то хотя бы 1- экстр. – max или min обязательно достигается во внутр. т-ке. сÎ(a,b) (в противном случае f=const), то по т-ме Ферма, тогда f‘(c)=0, что и требовалось д-ть. Т-ма Тейлора. «О приближении гладкой ф-ци к полиномам» Опр. Пусть ф-ция f(x) имеет в т-ке а и некоторой ее окрестности пр-ные порядка n+1. Пусть х - любое значение аргумента из указанной окрестности, х¹а. Тогда между т-ми а и х надутся т-ка e такая, что справедлива ф-ла Тейлора. f(x)=f(a)+f‘(a)/1!(x+a)+ f‘‘(a)/2!(x+a)^2+f^(n)(а)/n!+f^(n+1)(e)/(n+1)!(x-a)^(n+1). Док-во. Сводится к Роллю путем введения вспом. переменной g(x). g(x)=f(x)-f(a)-f‘(x)(x-a)-.-1/n!*f^n(x)(x-a)^n-1/(n+1)!(x-a)^n+1*l. По т-ме Роляя $ т-ка с из (a,b), такая что g(c)=0 l=f^(n+1)(c) Правило Лопиталя. Пусть ф-ция f(x) и g(x) имеет в окр. т-ки х0 пр-ные f‘ и g‘ исключая возможность саму эту т-ку х0. Пусть lim(х®Dх )=lim(x®Dx)g(x)=0 так что f(x)/g(x) при x®x0 дает 0/0. lim(x®x0)f‘(x)/g‘(x) $ (4), когда он совпадает с пределом отношения ф-ции lim(x®x0)f(x)/g(x)= lim(x®x0)f‘(x)/g‘(x) (5) Док-во. Возьмем " т-ку х>х0 и рассмотрим на [x0;x] вспом ф-цию арг. t h(t)=f(t)-Ag(t), если tÎ[x0;x], т.к. удовл. этому св-ву в окр-ти т-ки х0, а т-ку х мы считаем достаточно близкой к х0. Ф-ция h непрерывна на [x0;x], поскольку lim(t®x0)h(t)=lim(t®x0)[f(t)-Ag(t)]=lim(t®x0)-A lim(t®x0)g(t)=0=h(0)=> непр. t=x0 По т-ме Логранджа (x0,x)$ c:h‘‘(c)=0 Производная обратной ф-цииТ-ма. Для диф. ф-ции с пр-ной, не равной нулю, пр-ная обратной ф-ции равна обратной обратной величине пр-ной данной ф-ции. Док-во. Пусть ф-ция y=f(x) диф. и y‘x=f‘(x)¹0. Пусть Dу¹0 – приращение независимой переменной у и Dх – соответствующее приращение обратной ф-ции x=j(y). Напишем тождество: Dx/Dy=1:Dy/Dx (2) Переходя к пределу в рав-ве (2) при Dу®0 и учитывая, что при этом также Dх®0, получим: lim(Dy®0)Dx/Dy=1:lim(Dx®0)Dy/Dx => x‘y=1/y‘x. Где х‘у – пр-ная обратной ф-ции. Производная обратной ф-цииТ-ма. Для диф. ф-ции с пр-ной, не равной нулю, пр-ная обратной ф-ции равна обратной обратной величине пр-ной данной ф-ции. Док-во. Пусть ф-ция y=f(x) диф. и y‘x=f‘(x)¹0. Пусть Dу¹0 – приращение независимой переменной у и Dх – соответствующее приращение обратной ф-ции x=j(y). Напишем тождество: Dx/Dy=1:Dy/Dx (2) Переходя к пределу в рав-ве (2) при Dу®0 и учитывая, что при этом также Dх®0, получим: lim(Dy®0)Dx/Dy=1:lim(Dx®0)Dy/Dx => x‘y=1/y‘x. Где х‘у – пр-ная обратной ф-ции. | Теорема Больцано-Вейерштрасса Из любой огран. посл-ти можно выбрать сход. подпосл-ть. Док-во 1. Поскольку посл-ть ограничена, то $ m и M, такое что " m£xn£M, " n. D1=[m,M] – отрезок, в котором лежат все т-ки посл-ти. Разделим его пополам. По крайней мере в одной из половинок будет нах-ся бесконечное число т-к посл-ти. D2 – та половина, где лежит бесконечное число т-к посл-ти. Делим его пополам. По краней мере в одной из половинок отр. D2 нах-ся бесконечное число т-к посл-ти. Эта половина - D3. Делим отрезок D3 . и т.д. получаем посл-ть вложенных отрезков, длинны которых стремятся к 0. Согластно о т-ме о вложенных отрезках, $ единств. т-ка С, кот. принадл. всем отрезкам D1, какую-либо т-ку Dn1. В отрезке D2 выбираю т-ку xn2, так чтобы n2>n1. В отрезке D3 . и т.д. В итоге пол-ем посл-ть xnkÎDk. Теорема Больцано-Коши Пусть ф-ция непр-на на отрезке [a,b] и на концах отрезка принимает зн-ния равных знаков, тогда $ т-ка с Ì (a,b) в которой ф-ция обращается в 0. Док-воПусть Х – мн-во таких т-к х из отрезка [a,b], где f(x)<0. Мн-во Х не пустое. ХÎ [a,b], значит х ограничено, поэтому оно имеет точную верхнюю грань. c=supx. a£c£b покажем a<c<b по т-ме об уст. знака, поэтому c¹a, c¹b. Предположим f(c)=0, что это не так, тогда $ окрестность т-ки с в пределах которой ф-ция сохраняет знак, но это не можетбыть, т.к. по разные стороны т-ки с ф-ция имеет разный знак. f(с)=0. Теорема Вейерштрасса Непрерывная ф-ция на отрезке ограничена. Док-во Предположим что ф-ция не ограничена. Возьмем целое пол-ное n, т.к. ф-ция не ограничена, то найдется xnÎ[a,b], такое что ½f(xn)½>n. Имеем посл-ть т-к xn. По т-ме Больцано-Коши из посл-ти xn можно выбрать сходящиюся подпосл-ть xnk$®x0. По т-ме о предельном переходе к неравенству. a£xnk£b a£x0£b x0Î[a,b] Если посл-ть xnk сходится к x0, то f(xnk) будет сходится f(x0) ½f(xnk)½>nk, a nk®¥Þ½f(xnk)½®¥, т.е. f(xnk) б/б посл-ть. С одной стороны f(xnk) стремится к опр. числу, а с др. стороны стремится к ¥, пришли к противоречию, т.к. мы предположим, что ф-ция не ограничена. Значит наше предположение не верно. |