Главная » Каталог    
рефераты Разделы рефераты
рефераты
рефератыГлавная

рефератыБиология

рефератыБухгалтерский учет и аудит

рефератыВоенная кафедра

рефератыГеография

рефератыГеология

рефератыГрафология

рефератыДеньги и кредит

рефератыЕстествознание

рефератыЗоология

рефератыИнвестиции

рефератыИностранные языки

рефератыИскусство

рефератыИстория

рефератыКартография

рефератыКомпьютерные сети

рефератыКомпьютеры ЭВМ

рефератыКосметология

рефератыКультурология

рефератыЛитература

рефератыМаркетинг

рефератыМатематика

рефератыМашиностроение

рефератыМедицина

рефератыМенеджмент

рефератыМузыка

рефератыНаука и техника

рефератыПедагогика

рефератыПраво

рефератыПромышленность производство

рефератыРадиоэлектроника

рефератыРеклама

рефератыРефераты по геологии

рефератыМедицинские наукам

рефератыУправление

рефератыФизика

рефератыФилософия

рефератыФинансы

рефератыФотография

рефератыХимия

рефератыЭкономика

рефераты
рефераты Информация рефераты
рефераты
рефераты

Реферат: Центральная предельная теорема и ее доказательство через ряды Тейлора

Прежде чем приступить к рассмотрению центральной предельной теоремы, я считаю

нужным сказать о слабой сходимости.

Пусть задана последовательность случайных величин (далее с. в.) $\{\xi_n\}$

, задано некоторое распределение $\cal F$

с функцией распределения $F_\xi$

и $\xi$ — произвольная

с. в., имеющая распределение $\cal F$

.

Определение.

Говорят, что последовательность с. в. $\{\xi_n\}$

при $n\to\infty$

сходится слабо или по распределению к с. в. $\xi$

и пишут: $\xi_n\Rightarrow\xi$

, или $F_{\xi_n}\Rightarrow F_\xi$

, или $\xi_n\mbox{ $\Rightarrow$\space }\cal F$

,

если для любого Реферат: Центральная предельная теорема и ее доказательство через ряды Тейлора такого, что

функция распределения $F_\xi$

непрерывна в точке Реферат: Центральная предельная теорема и ее доказательство через ряды Тейлора , имеет

место сходимость $F_{\xi_n}(x)\to F_\xi(x)$

при $n\to\infty$.

Иначе говоря, слабая сходимость — это поточечная сходимость функций

распределения во всех точках непрерывности предельной функции распределения.

Свойство 1.

Если $\xi_n\Rightarrow\xi$, и функция распределения $F_\xi$непрерывна в точках Реферат: Центральная предельная теорема и ее доказательство через ряды Тейлора и Реферат: Центральная предельная теорема и ее доказательство через ряды Тейлора , то

$\mathsf P(\xi_n\in[a,b])\to
\mathsf P(\xi\in[a,b])$ и т.д. (продолжить ряд).

Наоборот, если во всех точках Реферат: Центральная предельная теорема и ее доказательство через ряды Тейлора и Реферат: Центральная предельная теорема и ее доказательство через ряды Тейлора

непрерывности функции распределения $F_\xi$

имеет место, например, сходимость $\mathsf P(\xi_n\in[a,b])\to
\mathsf P(\xi\in[a,b])$

, то $\xi_n\Rightarrow\xi$

.

Следующее важное свойство уточняет отношения между сходимостями.

Свойство 2.

1. Если $\xi_n\buildrel {\rm p} \over \longrightarrow\xi$, то $\xi_n\Rightarrow\xi$.

2. Если $\xi_n\Rightarrow c=\text{const}$, то $\xi_n\buildrel {\rm p} \over \longrightarrow c$.

Свойство 3.

1. Если $\xi_n\buildrel {\rm p} \over \longrightarrow c=\text{const}$и $\eta_n\Rightarrow\eta$, то $\xi_n\cdot\eta_n\Rightarrow c\eta$.

2. Если $\xi_n\buildrel {\rm p} \over \longrightarrow c=\text{const}$и $\eta_n\Rightarrow\eta$, то $\xi_n+\eta_n\Rightarrow c+\eta$.

Несколько содержательных примеров слабой сходимости я рассмотрю ниже. Но

основной источник слабо сходящихся последовательностей и необычайно мощное и

универсальное средство для асимптотического анализа распределений сумм

независимых и одинаково распределенных случайных величин предоставляет нам

центральная предельная теорема.

Я буду называть следующее утверждение «ЦПТ Ляпунова» (А. М. Ляпунов: 1901), но

сформулирую и докажу теорему Ляпунова только в частном случае, т.е.

для последовательности независимых и одинаково распределенных случайных

величин.

Центральная предельная теорема.

Пусть $\xi_1,\xi_2,\ldots$

— независимые и одинаково распределенные случайные величины с конечной и

ненулевой дисперсией: $0<\mathsf D\,\xi_1\ <\infty $

. Обозначим через $S_n$

сумму первых Реферат: Центральная предельная теорема и ее доказательство через ряды Тейлора случайных величин: $S_n=\xi_1+\ldots+\xi_n$

.

Тогда последовательность случайных величин $\dfrac{S_n-n\,\mathsf E\,\xi_1}{\sqrt{n\,\mathsf D\,\xi_1}}$

слабо сходится к стандартному нормальному распределению.

Доказательство.

Пусть $\xi_1,\xi_2,\ldots$

— последовательность независимых и одинаково распределенных случайных величин с

конечной и ненулевой дисперсией. Обозначим через Реферат: Центральная предельная теорема и ее доказательство через ряды Тейлора

математическое ожидание $\mathsf E\xi_1$

и через $\sigma^2$

дисперсию $\mathsf D\xi_1$

. Требуется доказать, что

\begin{displaymath}
\dfrac{S_n-na}{\sigma\sqrt{n}}=
\dfrac{\xi_1+\dots+\xi_n-na}{\sigma\sqrt{n}}\mbox{ $\Rightarrow$\space }\mathbf N_{0,1}.\end{displaymath}

Введем стандартизированные случайные величины $\zeta_i=\dfrac{\xi_i-a}{\sigma}$

— независимые с.в. с нулевыми математическими ожиданиями и единичными

дисперсиями. Пусть $Z_n$

есть их сумма $Z_n=\zeta_1+\dots+\zeta_n=(S_n-na)/\sigma$

. Требуется доказать, что

\begin{displaymath}
\dfrac{Z_n}{\sqrt{n}}\mbox{ $\Rightarrow$\space }\mathbf N_{0,1}.\end{displaymath}

Характеристическая функция величины ${Z_n}/{\sqrt{n}}$равна

\begin{equation}
\varphi_{Z_n/\sqrt{n}}(t)
\,
{\buildrel{{\boldsymbol{\varphi3}}...
 ...\left(\varphi_{\zeta_1}\left(\dfrac{t}{\sqrt{n}}\right)\right)}^n.\end{equation}

Характеристическую функцию с.в. $\zeta_1$

можно разложить в ряд Тейлора, в коэффициентах которого использовать известные

моменты $\mathsf E\zeta_1=0$

, $\mathsf E{\zeta_1}^2=\mathsf D\zeta_1=1$

. Получим

\begin{displaymath}
\varphi_{\zeta_1}(t)
\,
{\buildrel{{\boldsymbol{\varphi6}}}\...
 ...t^2}{2}\,
\mathsf E{\zeta_1}^2 +o(t^2)=1-\dfrac{t^2}{2}+o(t^2).\end{displaymath}

Подставим это разложение, взятое в точке $t/\sqrt{n}$

, в равенство и устремим Реферат: Центральная предельная теорема и ее доказательство через ряды Тейлора к

бесконечности. Еще раз воспользуемся замечательным пределом:

\begin{displaymath}
\varphi_{Z_n/\sqrt{n}}(t)=
{\left(\varphi_{\zeta_1}\left(\df...
 ...t\{-\dfrac{t^2}{2}\right\} \quad \text{ при } \quad n\to\infty.\end{displaymath}

В пределе получили характеристическую функцию стандартного нормального

закона. По теореме о непрерывном соответствии можно сделать вывод о слабой

сходимости :

\begin{displaymath}
\dfrac{Z_n}{\sqrt{n}}=\dfrac{S_n-na}{\sigma\sqrt{n}}
\mbox{ $\Rightarrow$\space }\mathbf N_{0,1}\end{displaymath}

распределений стандартизованных сумм к стандартному нормальному

распределению, что и утверждается в ЦПТ.

Пользуясь определением и свойствами слабой сходимости, и заметив, что функция

распределения $\Phi_{a,\sigma^2}(x)$

любого нормального закона непрерывна всюду на $\mathbb R$

, утверждение ЦПТ можно сформулировать любым из следующих способов:

Следствие.

Пусть $\xi_1,\xi_2,\ldots$

— независимые и одинаково распределенные случайные величины с конечной и

ненулевой дисперсией. Следующие утверждения эквивалентны друг другу и

равносильны утверждению ЦПТ.

· Для любых вещественных $x<y$при $n\to\infty$имеет место сходимость

\begin{displaymath}
\mathsf P \left(x<\dfrac{S_n-n\,\mathsf E\,\xi_1}{\sqrt{n\,\...
 ...0,1}(x)=
\int\limits_x^y ~\frac{1}{\sqrt{2\pi}}~e^{-t^2/2}\,dt;\end{displaymath}

· Для любых вещественных $x<y$при $n\to\infty$имеет место сходимость

\begin{displaymath}
\mathsf P \left(x\le\dfrac{S_n-n\,\mathsf E\,\xi_1}{\sqrt{n\...
 ...0,1}(x)=
\int\limits_x^y ~\frac{1}{\sqrt{2\pi}}~e^{-t^2/2}\,dt;\end{displaymath}

· Для любых вещественных $x<y$при $n\to\infty$имеет место сходимость

\begin{displaymath}
\mathsf P \left(x\le\dfrac{S_n-n\,\mathsf E\,\xi_1}{\sqrt{n}...
 ...,\xi_1}}
\int\limits_x^y ~\frac{1}{\sqrt{2\pi}}~e^{-t^2/2}\,dt;\end{displaymath}

· Если $\eta$

— произвольная с. в. со стандартным нормальным распределением, то

\begin{displaymath}
\dfrac{S_n-n\,\mathsf E\,\xi_1}{\sqrt{n\,\mathsf D\,\xi_1}}\...
 ...subset$}$\!\!\!\!\! =$\space }{\mathbf N}_{0,\mathsf D\,\xi_1}.\end{displaymath}

Следствием из ЦПТ является предельная теорема Муавра-Лапласа.

Предельная теорема Муавра — Лапласа.

Пусть Реферат: Центральная предельная теорема и ее доказательство через ряды Тейлора — событие, которое

может произойти в любом из Реферат: Центральная предельная теорема и ее доказательство через ряды Тейлора

независимых испытаний с одной и той же вероятностью $p=\mathsf P(A)$

. Пусть $\nu_n(A)$

число осуществлений события Реферат: Центральная предельная теорема и ее доказательство через ряды Тейлора в Реферат: Центральная предельная теорема и ее доказательство через ряды Тейлора

испытаниях. Тогда $\dfrac{\nu_n(A)-np}{\sqrt{np(1-p)}}\mbox{ $\Rightarrow$\space }
\mathbf N_{0,1}$

.

Иначе говоря, для любых вещественных $x<y$при $n\to\infty$имеет место сходимость

\begin{displaymath}
\mathsf P \left(x\le\dfrac{\nu_n(A)-np}{\sqrt{np(1-p)}}
\le ...
 ...0,1}(x)=
\int\limits_x^y ~\frac{1}{\sqrt{2\pi}}~e^{-t^2/2}\,dt;\end{displaymath}

Доказательство.

По-прежнему $\nu_n(A)$

есть сумма независимых, одинаково распределенных с. в., имеющих распределение

Бернулли с параметром, равным вероятности успеха $p=\mathsf P(A)$

:

\begin{displaymath}
\nu_n(A)=\xi_1+\dots+\xi_n, \quad \xi_i=I_i(A)=\begin{cases}...
 ... } A \text{ не произошло в } i-\text{м испытании}; \end{cases} \end{displaymath}

Реферат: Центральная предельная теорема и ее доказательство через ряды Тейлора

Осталось воспользоваться ЦПТ.

Ниже я рассмотрю примеры использования ЦПТ.

Пример 1.

З а д а ч а. Монета подбрасывается 10000 раз. Оценить вероятность

того, что частота выпадения герба отличается от вероятности более чем на одну

сотую.

Р е ш е н и е. Требуется найти $\mathsf P\left(\left\vert\dfrac{\nu_n}{n}-\dfrac12\right\vert\gt{,}01\right)$

, где $n={10}^4$, $\nu_n=\sum_{i=1}^n\xi_i=S_n$

— число выпадений герба, а $\xi_i$

— независимые с. в., имеющие одно и то же распределение Бернулли с параметром

1/2. Домножим обе части неравенства под знаком вероятности на $\sqrt{n}=100$

и поделим на корень из дисперсии $\sqrt{\mathsf D\,\xi_1}=1/2$

одного слагаемого.

\begin{multline*}
\mathsf P\left(\left\vert\dfrac{\nu_n}{n}-\dfrac12\right\vert\...
 ...\left\vert\dfrac{S_n}{n}-\mathsf E\,\xi_1\right\vert\le 2\right).\end{multline*}

Согласно ЦПТ или предельной теореме Муавра — Лапласа, последовательность

\begin{displaymath}
\dfrac{\sqrt{n}}{\sqrt{\mathsf D\,\xi_1}}
\left(\dfrac{S_n}{...
 ...t)=
\dfrac{S_n-n\,\mathsf E\,\xi_1}{\sqrt{n\,\mathsf D\,\xi_1}}\end{displaymath}

слабо сходится к стандартному нормальному распределению. Рассмотрим произвольную

с. в. $\eta$, имеющую

распределение ${\mathbf N}_{0,1}$

.

Пример 2.

Прекрасным примером ЦПТ в экономике может служить ее использование в страховом

деле. В большинстве случаев конкретный вид распределения потерь (размеров

отдельных требований о выплате страховых сумм) не играет существенной роли,

поскольку сумма исков, предъявляемых страховщику (величина суммарного иска),

обычно зависит только от средней величины и дисперсии убытка. Дело в том, что

если количество страховых случаев значительно превышает единицу, то в силу

центральной предельной теоремы распределение суммарного иска является

нормальным распределением. Обозначив его дисперсию как DZ, а

математическое ожидание (среднее значение суммарного иска) как <Z> =

<N><Q>

- где <N>, <Q> - среднее значение числа страховых случаев и величины

страховой выплаты, получаем следующее выражение для рисковой надбавки Тr

:

Тr = [(Т0*a)/(<N>*<Q>)]*(<N>*DQ + <Q>2*DN) 0.5

- где DQ и DN -дисперсии величины страховой выплаты и

количества страховых случаев.

В простейшем случае, когда все выплаты одинаковы (а, следовательно, их

дисперсия равна нулю), имеем:

Тr = (Т0*a)/N0.5

Эта формула также дает неплохое приближение, если коэффициент вариации уровня

страховых выплат значительно меньше единицы.

При включении в страховой полис нескольких независимых рисков ожидаемая

величина страховых выплат в соответствии с теоремой о сложении вероятностей

представляет собой сумму ожидаемых страховых выплат по каждому риску в

отдельности, а рисковая надбавка вычисляется как среднеквадратичная величина

всех рисковых надбавок.

рефераты Рекомендуем рефератырефераты

     
Рефераты @2011