Контрольная: VII Соросовская олимпиада. Заочный тур Математика 9 класс
VII Соросовская олимпиада. Заочный тур Математика 9 класс
9-I-1. Изобразите на плоскости множество точек, координаты (x;y) которых
удовлетворяют уравнению x3 + y3 = x2y2
+ xy.
9-I-2. Найдите a, b, c, d, при которых для всех x имеет место равенство
||x| - 1| = a|x| + b|x - 1| + c|x + 1| + d .
9-I-3. Представьте 102 в виде суммы наибольшего числа различных простых чисел.
9-I-4. Расстояние между городами A и B равно 30 км. Из A выехал автобус,
который через каждые 5 км делает остановку продолжительностью 2 мин. Между
остановками автобус движется со скоростью 80 км/ч. Одновременно с отправлением
автобуса из A навстречу ему из B выезжает велосипедист, который едет со
скоростью 27 км/ч. На каком расстоянии от A велосипедист встретится с
автобусом?
9-I-5. При всех допустимых значениях a и b решите уравнение
x3 / (x - a)(x - b) + a3 / (a - b)(a - x) + b3 / (b - x)(b - a) = x2 + a + b.
9-I-6. Две вершины прямоугольника расположены на стороне BC треугольника
ABC, а две другие на сторонах AB и AC. Известно, что середина высоты этого
треугольника, проведенной к стороне BC, лежит на одной из диагоналей
прямоугольника, а сторона прямоугольника, расположенная на BC, в три раза
меньше BC. В каком отношении высота треугольника делит сторону BC?
9-I-7. Стороны AB и CD четырехугольника ABCD при продолжении пересекаются
в точке E. На диагоналях AC и BD взяты соответственно точки M и N так, что
AM/AC = BN/BD = k. Найдите площадь треугольника EMN, если площадь
четырехугольника ABCD равна S.
9-I-8. Дан треугольник ABC. На его сторонах BC, CA и AB взяты
соответственно точки A1, B1 и C1 так, что 2ÐB1A1C
1 + ÐBAC = 180°, 2ÐA1C1B1 +
ÐACB = 180°, 2ÐC1B1A1 + ÐCBA =
180°. Найдите геометрическое место центров окружностей, описанных около
треугольников A1B1C1 (рассматриваются
всевозможные такие треугольники). |