Главная » Каталог    
рефераты Разделы рефераты
рефераты
рефератыГлавная

рефератыБиология

рефератыБухгалтерский учет и аудит

рефератыВоенная кафедра

рефератыГеография

рефератыГеология

рефератыГрафология

рефератыДеньги и кредит

рефератыЕстествознание

рефератыЗоология

рефератыИнвестиции

рефератыИностранные языки

рефератыИскусство

рефератыИстория

рефератыКартография

рефератыКомпьютерные сети

рефератыКомпьютеры ЭВМ

рефератыКосметология

рефератыКультурология

рефератыЛитература

рефератыМаркетинг

рефератыМатематика

рефератыМашиностроение

рефератыМедицина

рефератыМенеджмент

рефератыМузыка

рефератыНаука и техника

рефератыПедагогика

рефератыПраво

рефератыПромышленность производство

рефератыРадиоэлектроника

рефератыРеклама

рефератыРефераты по геологии

рефератыМедицинские наукам

рефератыУправление

рефератыФизика

рефератыФилософия

рефератыФинансы

рефератыФотография

рефератыХимия

рефератыЭкономика

рефераты
рефераты Информация рефераты
рефераты
рефераты

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ

ДИПЛОМНАЯ РАБОТА

Организация познавательной деятельности учащихся

на факультативных занятиях по теме

«Иррациональные неравенства»

Выполнила: студентка

VI курса МФ

Филиппова Ольга

Владимировна

Научный руководитель:

Кузьмичев Анатолий

Иванович

старший преподаватель

Кафедры алгебры

г.НОВОСИБИРСК

1999 г.

СОДЕРЖАНИЕ

Введение.

Глава 1. Организация познавательной деятельности на факультативных занятиях.

1. История развития форм обучения. Сущность понятия “форма” организации

познавательной деятельности.

2. Самостоятельная работа учащихся - один из важнейших способов организации

познавательной деятельности.

3. Фронтальная и групповая формы организации познавательной деятельности

учащихся.

4. Оптимальное сочетание и взаимодействие форм учебно-познавательной

деятельности.

Выводы по 1-й главе.

Глава 2. Анализ опытно-экспериментальной работы по применению

самостоятельной работы учащихся и других форм познавательной деятельности на

факультативных занятиях в выпускных классах.

1. Изучение учебных возможностей учащихся. Методика организации

факультативных занятий.

2. Результаты опытно-экспериментальной работы.

Выводы по 2-й главе.

Глава 3. Иррациональные неравенства, способы их решения.

1. Краткие исторические сведения.

2. Неравенства и их основные свойства.

3. Корень n-ой степени. Иррациональные неравенства.

4. Решение простейших иррациональных неравенств.

1-2

3-6

7-10

11-12

13-15

16

17-21

22-23

24

25-27

28-38

39-40

41-48

5. Решение иррациональных неравенств, содержащих переменную под знаком двух и

более радикалов чётной степени.

6. Решение иррациональных неравенств, содержащих переменную под знаком двух и

более радикалов нечётной степени.

7. Решение иррациональных неравенств с параметрами.

8. Решение иррациональных неравенств, способом ведения новой переменной.

9. Способ домножения обеих частей иррационального неравенства на некоторое

число, либо выражение.

10. Метод выделения полного квадрата в подкоренных выражениях при решении

иррациональных неравенств, либо разложения подкоренного выражения на

множители.

11. Решение иррациональных неравенств путём проб, выводов.

12. Решение более сложных примеров.

13. Подборка задач по теме «Решение иррациональных неравенств».

14. Классические неравенства.

Заключение.

Литература.

Приложение.

1. Введение.

2. Разработка факультатива по теме «Иррациональные неравенства».

49-53

54-59

60-65

66-71

72-74

75-77

78

79-81

82

83-97

98

99-100

101-103

104-133

ВВЕДЕНИЕ.

Вспомним, с каким интересом ребёнок первый раз идёт в школу, ведь его ждёт

там много нового и неизведанного, интересного и необычного. Но проходит время

и интерес к учению пропадает, исчезает желание идти в школу, на уроки, не

хочется делать домашнего задания. Неинтересные, однообразные уроки,

построенные по одной схеме, повторяющиеся изо дня в день, из урока в урок,

быстро надоедают. Почему это происходит? В современной дидактике основное

внимание уделяется проблемам, связанным с содержанием обучения и его

методами, а самой организации познавательной деятельности учащихся уделяется

гораздо меньше внимания, от этого и идёт неумения учителя организовать

деятельность учащихся на уроке, незнание учителя как это сделать.

Для того чтобы интерес к учению не пропал, чтобы ученики хотели, а главное

умели получать знания, необходимо активизировать деятельность самих учащихся

на уроке. Учебный процесс должен строиться так, чтобы ученики сами получали

знания, а учитель являлся бы организатором этой деятельности. Учитель должен

применять различные формы организации познавательной деятельности, варианты

их оптимального сочетания.

Цель дипломной работы – показать эффективность самостоятельной работы

учащихся на факультативе при изучении темы «Иррациональные неравенства» в

выпускных классах средней школы.

В ходе дипломной работы была выдвинута рабочая гипотеза: самостоятельная

работа учащихся является одной из эффективнейших форм обучения, способствует

лучшему усвоению знаний, развитию навыков и умений по применению этих знаний,

повышает уровень активности учащихся.

В соответствии с целью и принятой гипотезой были выдвинуты следующие задачи:

1. Изучение психолого-педагогической литературы по данной теме.

2. Характеристика и анализ самостоятельной работы учащихся.

3. Изучение учебных возможностей учащихся на факультативе.

4. Проведение опытно-экспериментальной работы в выпускных классах средней

школы № 9 г. Куйбышева НСО.

Выполнение задач осуществлялось следующими методами:

1. Анализ психолого-педагогической литературы;

2. Наблюдение;

3. Анкетирование учащихся;

4. Беседы с учащимися;

5. Проведение опытно-экспериментальной работы.

ГЛАВА I. ОРГАНИЗАЦИЯ ПОЗНАВАТЕЛЬНОЙ ДЕЯТЕЛЬНОСТИ НА УРОКАХ МАТЕМАТИКИ

1. История развития форм обучения. Сущность понятия «форма» организации

познавательной деятельности.

В истории школы длительное время преобладало индивидуальное обучение. Ещё

первобытный человек передавал свои знания об окружающем мире, свой жизненный

опыт младшим в процессе повседневного общения сначала с помощью мимики и

жестов, а затем, с появлением письменности, возникает потребность в обучении

письму. Это обучение было индивидуальным: жрец обучал каждого ученика

отдельно, кузнец или сапожник учили своих учеников-подмастерьев тоже

поодиночке. Таким же образом шло обучение любому мастерству (гончарному,

ювелирному, столярному и т. д.).

В последующие века в дворянских семьях у детей был свой учитель, свой

гувернер, который при непосредственном общении передавал знания и умения

своему подопечному.

Социально-экономические условия жизни общества оказывают существенное влияние

на изменение всего учебного процесса, включая и его организаторскую

структуру.

Развитие математики, физики, астрономии, географии и других наук привело к

потребности в большем числе образованных, грамотных специалистов. В эпоху

раннего феодализма на 500 человек населения Парижа приходился только один

ученик. А в 1500 году, например, в Страсбурге на 16 тысяч человек - более 300

учащихся, т.е. 1 учащийся на 53-54 человека. В связи с этим ситуация в школах

изменилась: учителю уже приходилось работать не с 8-10, а 30-40 учениками и

даже больше. Поэтому индивидуальная форма обучения постепенно уступает место

индивидуально-групповому обучению. Теперь учитель мог обучать не одного, а

сразу нескольких учащихся. Численность и состав групп были различными.

Обучение, как правило, проводилось по следующей схеме: ученик учил

определённый текст, а затем пересказывал учителю этот материал, отвечал на

вопросы. После этого учащийся получал новое задание и отправлялся на своё

место готовить очередной урок, т.е. дальше шла самостоятельная работа

ученика. В это время учитель проверяет выполнение задания у следующего

учащегося. Все ученики готовили обычно свои уроки не дома, а в школе, в

присутствии своего учителя.

Уже в XII-XIII веках в университетах, а затем и в средних и начальных школах

в практику обучения входит групповой способ. Педагог стал обучать учащихся не

по одиночке, и каждого по очереди, а сразу группами.

Постепенный распад феодализма, развитие промышленности и торговли, появление

городов и мелкой буржуазии, новые географические открытия, возрождение науки

и искусства в Италии, а затем и во всей Европе, развитие техники- всё это

требовало более образованных и грамотных специалистов, способствовало поискам

новых форм в области просвещения. Групповая форма организации обучения

постепенно была заменена коллективной, которая позволяла одновременно

заниматься с одним учителем большому количеству учащихся.

Наиболее ранней системой организации коллективного обучения была классно-

урочная система, разработанная чешским педагогом Я.А.Каменским. В классы

объединялись учащиеся, которые имели одинаковый уровень подготовки. Учитель

должен следить за работой всего класса и отдельных учащихся.

Школьные занятия требуют применения различных форм организации деятельности

учащихся. Это помогает молодым более уверенно чувствовать себя в различных

жизненных ситуациях. Поэтому учителя должны выработать у учащихся навыки

индивидуального, самостоятельного, коллективного и группового труда.

Обучение - это составная часть общения. Вся учебная работа на уроке

происходит при определённом взаимодействии обучающего и обучаемого, т.е.

учителя и ученика, а в какой-то мере и учащихся между собой. Учитель

оказывает на учеников воздействие словесно, с помощью интонации, мимики,

жестов и т. д., учащиеся воспринимают эти воздействия, реагируют на них, в

зависимости от чего учитель строит свою дальнейшую деятельность. Характер

этого взаимодействия и определяет форму работы на уроке.

Сложность организации при построении урока объяснятся тем, что учитель,

работая с целым классом, управляет процессом учения каждого отдельного

ученика. При этом, хотя в классе находятся ученики примерно одного возраста и

обучающиеся по одной программе, но и различаются по уровню сформированности

знаний, умений и навыков, по отношению к учебным занятиям, у всех свои

индивидуальные черты характера, различные типы темперамента.

Общение между людьми может осуществляться непосредственно и опосредованно, а

так как обучение является частным случаем общения между людьми, то и обучение

может проходить непосредственно и опосредованно.

Учитель может обучать своих учеников, влияя на них непосредственно: прежде

всего, с помощью устного слова и средств, которые дополняют, усиливают

словесную речь (мимика, жесты, интонация и т. д.). При непосредственном

обучении ученик и учитель видят друг друга, слышат.

Люди могут общаться и опосредованно, когда друг друга они не слышат, а может

быть, даже в этот момент не видят, когда личное непосредственное воздействие

друг на друга отсутствует.

Основным средством в этом случае является письменное слово и то, что может

его заменить (таблицы, графики, магнитофонные записи и т. д.), но необходимо,

чтобы то, что писал, чертил один человек, было понятно, доступно и воспринято

другим человеком.

Выделяют 3 основные формы организации учебно-познавательной деятельности на

уроке: фронтальная, индивидуальная, групповая.

При фронтальной форме работы на уроке учитель обращается ко всему классу.

Обращаясь к отдельному ученику, учитель учитывает весь класс, значение ответа

одного ученика для всего класса. Учащиеся непосредственно контактировать не

могут.

При индивидуальной работе учащиеся на основе ранее полученных устных или

письменных инструкций работают каждый самостоятельно. Инструкции могут

учитывать индивидуальные особенности того или иного ученика. Непосредственно

контактировать с учителем и одноклассниками учащиеся при этом не могут. При

необходимости за разъяснениями обращаются учителю.

При групповой форме работы происходит непосредственное общение между

учащимися, их совместная деятельность. С учителем постоянного контакта нет.

Руководит процессом работы в группе звеньевой. До начала работы учитель даёт

устные и письменные инструкции.

2. Самостоятельная работа учащихся - один из важнейших способов организации

познавательной деятельности.

В учебной деятельности важно, чтобы учащиеся учились не просто запоминать то,

что говорит учитель, не просто учили то, что им объясняет учитель, а сами,

самостоятельно, могли добывать знания, важно на сколько самостоятелен ученик

в усвоении знаний и формировании умений. В этом учителю помогает

индивидуальная форма познавательной деятельности. Индивидуальная форма работы

учащихся заключается в том, что весь процесс обучения, прежде всего,

определяется индивидуальной работой учителя с учеником, либо учащийся

самостоятельно выполняет учебное задание на основе рекомендаций и инструкций,

полученных от учителя, в соответствии со своими индивидуальными

возможностями, без взаимодействия с другими учениками.

Неравномерность усвоения знаний, умений и навыков учащимися одного класса

связана с наличием значительных индивидуальных различий среди детей. Всякое

общее человек усваивает индивидуально в зависимости от воспитания, жизненных

условий, от темперамента и т. д.. Работая самостоятельно, ученик проявляет

инициативу, его темп работы зависит от его работоспособности, склонностей,

учебных возможностей, подготовленности, целеустремлённости. Такая форма

работы предполагает подбор приёмов и дидактических средств обучения, которые

обеспечат оптимальное развитие любого ученика в классе, как самостоятельного

сильного, так и слабого.

Главный признак индивидуальной формы работы - выполнение «своего» задания.

Индивидуальное задание отличается от фронтального тем, что оно подбирается не

для всех вместе, а для каждого в отдельности, с учётом индивидуальных

особенностей школьника.

Самостоятельность - качество, которое необходимо воспитывать у учащихся. В

жизни каждого человека есть ситуации, когда всё приходиться решать самому и

переложить на другого нет возможности. Чтобы не растеряться, чтобы быть в

состоянии самостоятельно принимать решения - для этого в процессе обучения

нужно создавать такие ситуации, где бы ребята без чьей бы то ни было помощи

могли решать предложенные познавательные задачи, сами могли изучить материал

и рассказать товарищам, сами могли составить задачу и решить её.

Самостоятельная работа учащихся - это работа, которая выполняется без

непосредственного участия учителя. Существуют специальные задания,

ориентирующие школьников на их самостоятельное выполнение: работа над

учебниками, решение задач, написание рефератов, изложений и сочинений и т.

д..

Выделяют 4 разновидности самостоятельной, познавательной деятельности в

процессе обучения:

1. Цель и план работы ученик осуществляет с помощью учителя;

2. Цель учащийся определяет с помощью учителя, а план - самостоятельно;

3. Цель и план учащийся определяет самостоятельно, но задание даёт учитель;

4. Без помощи учителя учащийся сам определяет содержание, цель, план работы и

самостоятельно её выполняет.

Первая разновидность наиболее простая, и с неё учитель должен начинать

подготовку ребят к более сложным этапам самостоятельной работы. Затем

постепенно, переходя от этапа к этапу, самостоятельная работа «становится всё

более «самостоятельной», где ученик может полностью проявлять свои знания,

инициативу, личные качества и индивидуальные особенности.

Самостоятельная работа организуется с помощью индивидуальных форм обучения.

Ученик работает самостоятельно дома при выполнении домашних заданий,

написании рефератов и т. д.

Индивидуальная форма предполагает деятельность ученика по выполнению общих

для всего класса заданий без контакта с одноклассниками, в едином для всех

темпе.

Она преимущественно используется при закреплении знаний, формировании умений

и навыков, контроле знаний.

Индивидуальная работа на уроке требует от учителя тщательной подготовки,

большой затраты сил и времени. Однако эта форма организации познавательной

деятельности не всегда создаёт условия для полной самостоятельной

деятельности учащихся. Она является хорошим средством организации

деятельности сознательных учеников. Но нередко можно наблюдать на уроках

картину, когда слабо успевающие учащиеся либо ничем не занимаются, т. к. не

могут справиться самостоятельно с заданием, либо спрашивают у соседей по

парте о способе решения, что ведёт к списыванию и подсказкам.

Для организации большей самостоятельности школьников используется

индивидуализированная форма обучения. Эта форма предполагает такую

организацию работы, при которой каждый ученик выполняет своё, отличное от

других, задание с учётом учебных возможностей. Дифференцированные

индивидуальные задания бывают различной глубины и степени трудности - от

простых, на восприятие по образцу, до творческих. Эти задания оформляются на

специальных карточках. В начальных классах широкое применение получили

тетради с печатной основой. Эта форма организации познавательной деятельности

требует от учителя много дополнительных затрат времени и знаний для

приготовления карточек, подбора заданий. Сейчас в помощь учителю выпускается

специальная методическая литература, где печатаются различные работы

нескольких вариантов. Чаще всего индивидуализированная форма обучения

применяется с целью проверки степени усвоения учащимися материала.

Индивидуализированная форма учебной деятельности, способствуя воспитанию

самостоятельности учеников, таит в себе недостатки. Она разъединяет

школьников, создаёт условия для развития эгоизма, снижает положительное

влияние на формирование и развитие коллектива, учащийся может замыкаться в

себе, становиться малообщительным человеком. Чтобы этого избежать, необходимо

включать эту форму в процесс обучения как вспомогательную на продолжительное

время.

Нередко встречаются ученики, которые усваивают учебный материал после

неоднократного разбора. По этой причине на уроке необходимо находить время

для повторного разбора.

Индивидуализированно-групповая форма является дополнительной. Благодаря ей

учитель имеет возможность на отдельных этапах урока специально заниматься с

1-2 учениками, не отрывая класс от работы по выполнению общего задания. Эта

форма способствует предупреждению отставания слабых и создаёт лучшие условия

для развития и повышения своего уровня знаний одарённых школьников. Эта форма

организации познавательной деятельности учащихся на уроке может применяться

при изучении нового материала, при проверке выполнения домашнего задания, при

контроле знаний. Организация индивидуализированно-групповой работы требует

высокого мастерства учителя, который должен уметь распределять внимание,

использовать разнообразный дидактический материал, работая с отдельными

учениками, преподаватель не должен выпускать из вида всех учащихся класса,

всё, что происходит на уроке, должно быть в поле его зрения.

3. Фронтальная и групповая формы организации познавательной деятельности

учащихся.

Тема этой работы – самостоятельная работа учащихся, но невозможно

использовать только эту форму организации познавательной деятельности.

Поэтому кратко рассмотрим фронтальную и групповую формы. Знание и понимание

их помогут нам правильно организовать работу учащихся на уроках и дома.

Существуют различные точки зрения на определение фронтальной работы учащихся

на уроке. Стрезикозин В.П., Галант Е. Я., например, считают, что «фронтальный

способ организации учебной работы предусматривает одновременное выполнение

учащимися под наблюдением учителя одного и того же задания». Другие

(Петровский Е.И., Семёнов И.А.) считают, что фронтальной является работа,

которую выполняют все учащиеся одновременно, но содержание может быть общим

для всех или дифференцированным.

Коллективной фронтальная работа становится тогда, когда идут совместные

поиски, обсуждения, т. е. коллективная учебная работа учащихся на уроках -

это частный случай фронтальной или общешкольной работы. Смысл коллективного

обучения: все обучают каждого, каждый обучает всех; то, что знает один,

должны знать все; то, что знает коллектив, становится достоянием каждого.

Фронтальная форма способствует сплочению коллектива, учит ребят отстаивать

свою точку зрения, учит умению слушать других.

фронтальная форма познавательной деятельности учащихся наряду с её

положительными сторонами имеет ряд существенных недостатков: ученики с

низкими учебными возможностями работают медленно, хуже других усваивают

материал, а ребята с высокими учебными возможностями теряют много времени на

то, что им уже понятно и известно.

Групповая форма организации познавательной деятельности учащихся заключается

в том, что для выполнения поставленных задач класс делится на группы, в

которых ребята совместно планируют свою работу, обсуждают способ решения. В

учебном процессе при групповой работе между учащимися происходит обмен

информацией. Ученик может сообщить другим сведения, которые он почерпнул из

литературы, из посещения музеев, выставок и т. д.. В процессе учебной работы

происходит взаимопомощь, взаимное обогащение, создаётся более благоприятная,

доброжелательная обстановка для тех ребят, которые смущаются выступать перед

всем классом. Особое внимание при организации групповой работы следует

обратить на формирование групп. Важно учитывать уровень успеваемости,

различную информированность, разную трудоспособность ребят, взаимоотношения в

классе. От того, как учитель справится с проблемами, связанными с

организацией групповой формы деятельности, зависит успешность урока.

4. Оптимальное сочетание форм организации познавательной

деятельности.

Любая форма учебно-понавательной деятельности имеет свои преимущества и

недостатки, выбор той или иной формы обусловлен рядом обстоятельств. В

частности, необходимо учитывать специфику изучаемого предмета, его сложность,

материал может иметь разную сложность, разную новизну. Трудный материал,

обладающий большой степенью новизны на первом этапе, требует фронтальная

работы, где главная роль в изложении принадлежит учителю. Подготовленность

учащихся и их индивидуальные особенности, квалификация учителя- всё это

влияет на выбор той или иной формы организации деятельности учащихся.

Сочетание различных форм многовариантно. Оно осуществляется либо

последовательно, когда одна форма следует за другой, либо параллельно, когда

сочетание протекает одновременно и формы работы входят одна в другую.

Как показывает опыт и множество экспериментов, проведённых различными

педагогами, сочетание форм организации деятельности следует применять, идя от

сочетания простых, к более сложным, учитывая возраст учащихся, специфику

предмета. Для определения оптимального варианта организации деятельности

необходимо знать, как влияет конкретная форма на эффективность учебной

деятельности различных групп учащихся. «Такое сочетание форм учебной работы,

при котором нейтрализуются недостатки одних и обеспечивается более высокая

результативность других при минимальных затратах времени, является

оптимальным». (Чередов И.М. «Методика планирования школьных форм организации

обучения»).

«Оптимальным вариантом сочетания коллективной, групповой и индивидуальной

форм работы учащихся будет тот, который в соответствии с дидактической целью

и спецификой учебного материала создаёт наилучшие условия для обучения и

воспитания». (Виноградова М.Д., Первин И.В. «Коллективная познавательная

деятельность и воспитание школьников»).

Выбор формы зависит от многих факторов, но в большей степени от этапа в

процессе обучения. Педагоги, которые занимаются этим вопросом, выявили

некоторые закономерности и разработали рекомендации по выбору оптимального

сочетания форм работы учеников на уроке.

При ознакомлении с новым материалом:

Специфика учебного материала.Метод учебной работы.Форма учебной работы.
Материал лёгкий, доступный для самостоятельного обучения.Самостоятельная работа с учебником, книгой.И+Ф
Материал труден некоторым учащимся или доступен , но велик по объёму.Объяснение, беседа, самостоятельная работа.Ф+Г
Материал трудный или велик по объёму, или неполно освещён в учебнике.Объяснение, рассказ, лекции, демонстрация.Ф+И+Ф или Ф+Г+Ф

При закреплении и применении знаний:

Материал лёгкий, доступный для самостоятельного обучения.Самостоятельная работа, упражнения, лабораторная или практическая работа.И+Ф
Материал представляет трудность для отдельных учеников.Самостоятельная работа, лаборатор., практические занятия.И+Г или Г+Ф
Материал трдный, усвоение требует постоянного руководства учителя.Упражнения с коментариями, объяснение.Ф+Г+Ф или Ф+И+Ф

При опросе и проверке знаний:

Материал хорошо усвоен всеми учащимися класса.Фронтальный опрос, общеклассная контрольная работа.Ф
Материал недостаточно усвоен отдельными учениками.Самостоятельная работа по вариантам с учётом уровня знаний.Г+Ф
Материал сложен, большой по объёму, требует глубокого осмысления, анализа, синтеза.Индивидуальный опрос с его коллективным обсуждением.И+Ф

Конечно, эти рекомендации не являются идеальными для всех случаев, они

требуют определённой корректировки и доработки в конкретных условиях, на

конкретном уроке и предмете.

Выводы по 1-й главе:

В первой главе дипломной работы исследуется теоретическая сторона данной

проблемы, характеризуется самостоятельная работа учащихся, другие формы

организации познавательной деятельности, раскрывается история развития форм

обучения с древнейших времён до наших дней. Существуют три основные формы

организации учебно-познавательной деятельности учащихся на уроке:

индивидуальная (самостоятельная работа учащихся), фронтальная и групповая.

Каждая форма имеет свои недостатки и преимущества, поэтому, планируя урок,

учитель должен подбирать сочетание форм так, чтобы усилить сильные и

нейтрализовать слабые стороны каждой формы.

ГЛАВА II. АНАЛИЗ ОПЫТНО- ЭКСПЕРИМЕНТАЛЬНОЙ РАБОТЫ ПО ПРИМЕНЕНИЮ

САМОСТОЯТЕЛЬНОЙ РАБОТЫ УЧАЩИХСЯ И ДРУГИХ ФОРМ ПОЗНАВАТЕЛЬНОЙ ДЕЯТЕЛЬНОСТИ НА

ФАКУЛЬТАТИВНЫХ ЗАНЯТИЯХ В ВЫПУСКНЫХ КЛАССАХ.

1. Изучение учебных возможностей учащихся. Методика проведения факультативных

занятий.

Для проведения эксперимента необходим предварительный анализ коллектива, в

котором будет проходить эксперимент, и того, который будет являться

контрольным. В данном случае опытная работа проводилась в выпускных классах

средней школы №9 г. Куйбышева НСО. На факультатив учащиеся записывались по

желанию. Записалось 18 человек. Это те ребята, которые собираются поступать в

ВУЗы и на вступительных экзаменах должны сдавать математику. Была определена

цель факультативных занятий: подготовка к экзаменам в ВУЗы.

Для изучения учебных возможностей учащихся проводился констатирующий

эксперимент. Он включает в себя разнообразные методы исследования. В

частности проводилось наблюдение за работой каждого учащегося на уроках

алгебры, изучение письменных работ по предмету, беседы с учащимися и

учителем, самостоятельная работа.

Учебные возможности складываются из обучаемости и работоспособности каждого

учащегося.

Обучаемость- способность ученика за более короткий срок достигать более

высокого уровня знаний. Обучаемость зависит от знаний, которыми ученик уже

обладает, от продуктивности и ёмкости мышления.

Выделяют следующие уровни обучаемости учащихся:

Высокий уровень - ребята свободно усваивают изучаемый материал, выделяют

существенное, в частном видят общее, закономерное, способны самостоятельно

развивать раскрытые на уроке положения, легко переносят знания в новые

ситуации, достигают высокого уровня знаний за самое короткое время.

Средний уровень - изучаемый материал усваивают после тренировки; выделяют

существенное, закономерное не сразу, а после выполнения определённых

тренировочных упражнений, такие ученики умеют в частном видеть общее.

Низкий уровень - усваивают материал после длительной тренировочной работы

и не всегда в полном объёме, затрудняются видеть существенное, закономерное

после общей тренировочной работы со всем классом, задания выполняют

преимущественно по аналогии.

Работоспособность ученика - состояние, характеризующее уровень и длительность

доступных ему усилий в учебной деятельности. Работоспособность зависит от

физических и психологических возможностей ученика, от состояния его здоровья,

эмоционального состояния в данный момент, настроя на работу.

Также как и у обучаемости, у работоспособности выделяют три уровня:

Высокий уровень - учащийся способен на сравнительно длинный, напряжённый

учебный труд, выполняет всё тщательно, аккуратно, в полном объёме, без

побуждения учителя.

Средний уровень - учащиеся способны трудиться сравнительно длительное

время, но не всегда и не всё выполняют тщательно, аккуратно и в полном объёме,

временами требуют контроля.

Низкий уровень - учащиеся сосредотачиваются на учебной работе только на

весьма ограниченное время, выполняют задание не в полном объёме, требуют

постоянного контроля учителя.

Всего существуют 4 основных уровня учебных возможностей: высший, высокий,

средний, низкий.

Среди ребят, записавшихся на факультатив, определение уровня учебных

возможностей проводилось по итогам наблюдений, ранее проведённых уроков,

бесед с учителем, основываясь на теорию. На 1-ом занятии факультатива была

проведена самостоятельная работа на повторение на 2 варианта.

Результаты её следующие:

Фамилия уч-сяС/рУровень уч. возм.
1. Афанасьева И.4В
2. Бондаренко А.3С
3. Горина О.5ВС
4. Галкин А.4В
5. Карелин Е.4С
6. Ковалёва Н.4В
7. Круглова С.5ВС
8. Марченко Н.3С
9. Михалечко А.5ВС
10. Михалечко И.4В
11. Носов Д.3С
12. Пивкина Д.4В
13. Рыжкова С.4С
14. Соколова Н.3С
15. Семёнов Д.4В
16. Хафизова Я.5ВС
17. Экмарова Д.5В
18. Ясиновский О.4С

В целом результаты определения уровня учебных возможностей оказались высокие:

высшие учебные возможности - 4 ученика,

высокие учебные возможности - 7 учеников,

средние учебные возможности - 7 учеников.

Это объясняется тем, что на факультатив пришли ребята, заинтересованные в

изучении предмета, имеющие хорошие знания и высокие оценки. По уровню

учебных возможностей ребята на первом занятии были разбиты на 2 группы для

проведения эксперимента. Учитывалось также желание учащихся.

1 группа (экспериментальная)2 группа (контрольная)
1. Афанасьева И.1. Ковалёва Н.
2. Галкин А.2. Пивкина Е.
3. Михалечко А.3. Экмаров Д.
4. Михалечко И.4. Хафизова Я.
5. Семёнов Д.5. Круглова С.
6. Горина О.6. Марченко Н.
7. Ясиновский О.7. Носов Д.
8. Бондаренко А.8. Рыжкова С.
9. Карелин Е.9. Соколова Н.

Получились примерно равные по учебным возможностям группы.

Задачей эксперимента было построение факультативных занятий так, чтобы у

учащихся не пропал интерес, а наоборот ещё больше повысился к предмету;

помочь ребятам углубить и расширить знания по алгебре; активизировать

самостоятельную работу учеников с книгами, дополнительной литературой.

Показать, что построение факультативных занятий по принципу сочетания

самостоятельной работы с другими формами организации познавательной

деятельности способствует выполнению этой задачи.

Опытно- экспериментальная работа проводилась в 1 группе, 2 группа была

контрольной. Все ребята посещали одни и те же занятия, изучали один и тот же

материал на уроках. Но ребята из 1 группы в качестве домашнего задания

получали задания самостоятельно изучить новую тему, написать доклады, найти и

прорешать примеры на эту тему. На занятиях эти ребята читали доклады,

объясняли решённые примеры. Непонятные места разбирались вместе всем классом

и учителем у доски. Ребята из 2 группы изучали новую тему, слушая доклады и

объяснения своих товарищей, затем все учащиеся решали одни задания, а на дом

учащиеся второй группы получали задания повторить пройденное на уроке,

прорешать заданные примеры по теме. По такому принципу были проведены 8

занятий. В конце была проведена итоговая контрольная работа.

2. Результаты опытно-экспериментальной работы.

В ходе опытно-экспериментальной работы была проверена и подтверждена

гипотеза, выдвинутая в начале работы над данной темой.

Для ребят из экспериментальной группы факультатив проходил гораздо

интереснее, чем для ребят из контрольной группы. Учащиеся из 1 группы более

активно работали в течение всех занятий, старались находить как можно больше

интересных примеров, с большой ответственностью подходили к выполнению

домашних заданий, т. к. знали, что от их ответов зависит ход всего занятия.

Повышение активности учащихся в экспериментальной группе, повышение интереса

к предмету - всё это подтверждает выдвинутую нами гипотезу.

В экспериментальной группе ребята продуктивнее работали, нежели в контрольной

группе, быстрее справлялись с заданиями, у них меньше возникало вопросов и

затруднений при решении задач, у учащихся 1 группы появилась большая

уверенность в себе.

В конце факультативных занятий была проведена в обеих группах контрольная

работа. Задания для всех были одинаковы, рассчитаны на 2 варианта.

Результаты контрольной работы следующие:

1 группаОценка2 группаОценка
1. Афанасьева И.51. Ковалёва Н. 4
2. Галкин А.42. Пивкина Е.5
3. Михалечко А. 53. Экмаров Д. 4
4. Михалечко И.44. Хафизова Я.5
5. Семёнов Д.55. Круглова С.5
6. Горина О.56. Марченко Н.3
7. Ясиновский О.37. Носов Д.3
8. Бондаренко А.38. Рыжкова С.3
9. Карелин Е.49. Соколова Н.4

В экспериментальной группе «5» получили 4 ученика, «4»- 3, «3»- 2, в

контрольной «5»- 3, «4»- 3, «3»- 3. Результаты данной контрольной работы

показали, что в экспериментальной группе ребята справились с заданием лучше,

чем в контрольной.

Результаты опытно-экспериментальной работы показывают, что применение

самостоятельной работы на занятиях способствуют лучшему усвоению знаний,

повышает активность ребят, интерес к данному предмету.

Выводы по 2 главе.

Во 2 главе давался анализ опытно- экспериментальной работе, проведённой на

факультативных занятиях в выпускных классах средней школы №9 г. Куйбышева

НСО. Первым этапом этой работы было выявление учебных возможностей учеников.

В данной главе рассказано о том, как были построены занятия на факультативе.

Во второй главе приводятся результаты опытно-экспериментальной работы,

которые подтверждают выдвинутую нами рабочую гипотезу о том, что

самостоятельная работа учащихся является одной из эффективнейших форм

обучения, способствует лучшему усвоению знаний, развитию навыков и умений по

применению этих знаний, повышает уровень активности учащихся.

ГЛАВА III. ИРРАЦИОНАЛЬНЫЕ НЕРАВЕНСТВА

1. Краткие исторические сведения

Потребность в действиях возведения в степень и извлечения корня была вызвана,

как и другие четыре арифметические действия, практической жизнью. Так, наряду с

задачей вычисления площади квадрата, сторона которого Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

известна, с давних времен встречалась обратная задача: какую длину должна иметь

сторона квадрата, чтобы его площадь равнялась Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

?

Еще 4000 лет назад вавилонские ученые составляли наряду с таблицами умножения и

таблицами обратных величин таблицы квадратов чисел и квадратных корней из

чисел? При этом они умели находить приближенное значение квадратного корня из

любого целого числа. Вавилонский метод извлечения квадратного корня можно

иллюстрировать на следующем примере, изложенном в одной из найденных при

раскопках клинописных табличек: Найти квадратный корень из 1700.

Для решения задачи данное число разлагается на сумму двух слагаемых:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства ,

первое из которых является полным квадратом. Затем указывается, что

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Правило, применявшееся вавилонянами, может быть выражено так: чтобы извлечь

корень из числа Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства ,

разлагают его на сумму Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

(Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства должно быть

достаточно малым в сравнении с Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

) и вычисляют по приближенной формуле:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Вавилонский метод извлечения квадратного корня был заимствован греками. Так,

например, у Герона Александрийского находим:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Для обозначения высших степеней употреблялись позже составные выражения

"биквадрат" или "квадрато-квадрат" для четвертой степени, или "кубоквадрат"

для пятой и т.д. Современные названия предложены голландским ученым

С.Стевином (1548-1620), который обозначал степени в виде 2, 3 и т.д. Он же

начал систематически употреблять дробные показатели степени для обозначения

корней.

В настоящее время для извлечения корня употребляется два обозначения: знак

радикала и дробные показатели. Предпочтительнее использовать обозначения со

знаком радикала - обозначения с дробными показателями являются скорее данью

традиции. Степени с отрицательными показателями ввел английский математик

Д.Уоллис.

Неравенства встречаются в математике еще в глубокой ревности. Рассмотрим

некоторые из них.

1. Среднее геометрическое двух положительных чисел Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

меньше их среднего арифметического (Евклид).

2. Архимед установил неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

3. Если Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства - наибольший квадрат, содержащийся в числе, а Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства - остаток, то

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства при Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства при Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

(Аль-Кальсади, Трактат "Раскрытие тайн науки Габар", XV век).

Дальнейшие обобщения натуральных, целых, рациональных и т.д. чисел привели к

понятию алгебраической системы, в частности, к понятию кольца и поля. Так,

иррациональные числа с алгебраической точки зрения являются элементами поля Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, они не содержатся в поле Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, и поле Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства является

расширением поля Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

2. Неравенства и их основные свойства

Мы будем рассматривать положительные, отрицательные действительные числа и число Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

. Изобразим горизонтальную числовую прямую, направленную вправо и числа на ней.

При движении вдоль прямой слева направо числа будут появляться в порядке их

возрастания. Ясно, что Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

. Но Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , так как

точка, изображающая Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, расположена правее точки, изображающей Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

. Таким образом, мы имеем следующее геометрическое правило для определения

неравенства:

Пусть Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства иДиплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

- какие-нибудь два действительных числа, изображенных точками горизонтальной

числовой прямой, направленной слева направо. Тогда Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

в том и только том случае, когда точка, изображающая число Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, лежит правее точки, изображающей число Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

.

Это геометрическое правило можно заменить простым арифметическим правилом,

если принять понятие положительного числа за основное:

Пусть Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

- какие-нибудь два действительных числа. Тогда Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

в том и только том случае, когда Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

положительно. В частности всякое положительное число больше нуля, ибо разность Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

положительна. Поэтому неравенство Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

употребляется для символической записи утверждения, что число Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

положительно. Отрицательное число определяется как число, противоположное

положительному числу относительно точки Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

на числовой прямой. Всякое отрицательное число меньше нуля, ибо, если Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

отрицательно, то Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

положительно. Запись Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

употребляется для обозначения утверждения, что Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

отрицательное число.

Число нуль обладает тем свойством, что Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства для любого действительного числа Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Итак, числа Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства могут относиться друг к другу следующим образом:

1). Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

2). Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

3). Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Причем всегда имеет место одно и только одно из этих соотношений.

Рассмотрим теперь основные свойства неравенств.

Теорема 1. Если и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , то Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Это свойство называется свойством транзитивности неравенств.

В самом деле,

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

как сумма двух отрицательных слагаемых. Дадим геометрическое толкование свойства

транзитивности: точка Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

на числовой прямой расположена левее точки Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, а точка Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства левее

точки Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , при этих

условиях точка Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

расположена левее точки Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

.

Теорема 2. Если Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, то Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , т.е. при

изменении знака обеих частей неравенства смысл знака неравенства меняется на

обратный.

Действительно,

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Следовательно, по определению Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Геометрическая иллюстрация:

Теорема 3. Если Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , то Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, т.е. обе части неравенства можно умножить на положительное число.

Действительно,

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Но Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства . Следовательно, Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства . Итак, Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , т.е. Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , что и требовалось доказать.

Теорема 4. Если Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , то Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, т.е. при умножении на отрицательное число знак неравенства меняется на

противоположный.

Действительно,

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Но Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , следовательно, и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , т.е. Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Теорема 5. Если Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , то Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, т.е. при умножении обеих частей неравенства на нуль неравенство переходит в

равенство.

Действительно,

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Теорема 6. Если Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства - произвольное

число, то Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , т.е. к

обеим частям неравенства можно прибавить произвольное число.

Действительно, Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , где Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства . Следовательно, Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , а так как Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , имеем: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Теорема 7. Если Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, то Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Предварительно напомним, что Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

есть обратное число, т.е. такое, что Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

. Имеем Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства . Но, с

другой стороны,

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Следовательно, и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства ,

так как, если произведение и один из множителей положительны, то и другой

множитель положителен. Значит Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

. Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Теорема 8. Если Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, то Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , т.е. квадрат

любого отличного от нуля числа положителен. Это следует из определения

умножения положительных и отрицательных чисел.

Теорема 9. Если Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , то Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, т.е. два неравенства одинакового смысла можно сложить.

Имеем Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства ,где Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства . Следовательно,

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

или

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

где Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , что и требовалось доказать.

Теорема 10. Если Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , то Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства . Как легко показать, разность Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства положительна.

Теорема 11. (о перемножении неравенств)

Если Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства положительны, то Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, т.е. обе части неравенства с положительными членами можно умножить на

неравенство того же смысла, больший член которого положителен.

Имеем последовательно:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Здесь каждое произведение, а следовательно, и сумма положительны, что и

требовалось доказать.

Теорема 12. (о делении неравенств)

Если Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства - положительны, то Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Действительно, здесь Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, и, на основании теоремы о перемножении неравенств, имеем Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, что и требовалось доказать.

Теорема 13. Если Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

- четное число, Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , а Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, то Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , т.е. четная

степень любого числа, отличного от нуля, положительна.

Теорема вытекает из положений, что Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Теорема 14. Если Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

- нечетное число, Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , то Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, т.е. отрицательное число в нечетной степени отрицательно.

Теорема вытекает из следующих соотношений: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Теорема 15. Если Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

- нечетное число, Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

- положительно, а Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства -

отрицательно, то Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Из предыдущего видно, что Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, а Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , откуда Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

.

Теорема 16. Если числа Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства положительны и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , то Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , где Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства - целое положительное число.

Действительно, если предположить, что Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, то возведя обе части неравенства в степень Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

. получим Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , т.е.

придем к противоречию.

Теорема 17. Если Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , то Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , где Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства - произвольное положительное рациональное число.

В самом деле, из Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства имеем Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства и дальше Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Мы рассмотрели числовые неравенства. Пусть теперь нам даны две функции Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства . Если поставить

между ними один из знаков неравенства (>,<, Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

,Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства ), получим

условное неравенство. В дальнейшем такие условные неравенства мы будем

называть просто неравенства.

Областью определения или областью допустимых значений (ОДЗ)

неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

называется множество таких значений Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, при которых и функция Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, и функция Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

определены. Иными словами, ОДЗ неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

- это пересечение ОДЗ функции Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

и ОДЗ функции Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Частным решением неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

называется всякое удовлетворяющее ему значение переменной Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

. Решением неравенства называется множество всех его частных решений.

Два неравенства с одной переменной называются равносильными, если их

решения совпадают (в частности, если оба неравенства не имеют решений). Если

каждое частное решение неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

является в то же время частным решением неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, полученного после преобразований неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, то неравенство Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

называется следствием неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

. В следующих теоремах речь идет о преобразованиях, приводящих к равносильным

неравенствам.

Теорема 18. Если к обеим частям неравенства прибавить одну и туже

функцию Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , которая

определена при всех значениях Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

из области определения исходного неравенства, и при этом оставить без изменения

знак неравенства, то получится неравенство, равносильное исходному. Таким

образом, неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства (1)

и

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства (2)

равносильны.

Доказательство: Пусть Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

=Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства - произвольное

решение неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

. Тогда Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства - истинное

числовое неравенство. Прибавим к обеим его частям число Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

(по условию это число существует, ибо неравенства (1) и (2) имеют одну и ту же

область определения. На основании свойства 6 числовых неравенств заключаем, что

числовое неравенство Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

- истинное. Следовательно, произвольное решение неравенства (1) является

решением неравенства (2).

Обратно, пусть Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства -

произвольное решение неравенства (2), значит Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

- истинное числовое неравенство. После вычитания из обеих частей этого

неравенства числа Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

по свойству 6 числовых неравенств получим истинное числовое неравенство Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

. Итак, произвольное решение неравенства (1) является решением неравенства (2) и

произвольное решение неравенства (2) является решением неравенства (1). Теорема

доказана.

Следствие. Неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

и

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

равносильны.

Теорема 19. Если обе части неравенства умножить (или разделить) на одну и

ту же функцию Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства ,

которая при всех значениях Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

из области определения исходного неравенства принимает только положительные

значения, и при этом оставить без изменения знак исходного неравенства, то

получится неравенство, равносильное исходному.

Таким образом, если Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , то неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства (1)

и

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства (2)

(или Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства ) равносильны.

Доказательство: пусть Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

произвольное решение неравенства (1). Тогда Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

- истинное числовое неравенство. Умножим обе его части на число Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

(по условию это число существует, ибо функция Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

имеет смысл при всех Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

из области определения неравенства (1), причем Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

). Н основании свойства 3 числовых неравенств заключаем. что числовое

неравенство (2) тоже истинное при Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

.

Обратно, пусть Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства -

произвольное решение неравенства (2), значит Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

- истинное числовое неравенство. После деления обеих частей неравенства на число Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

(по условию) по свойству 12 числовых неравенств получим истинное числовое

неравенство Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Следствие. Если обе части неравенства умножить (или разделить) на одно и

то же положительное число, сохраняя знак неравенства, то получится неравенство,

равносильное данному.

Теорема 20. Если обе части неравенства умножить (или разделить) на одну и

ту же функцию Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства ,

которая при всех значениях Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

из области определения исходного неравенства принимает только отрицательные

значения, и при этом изменить на противоположный знак неравенства, то получится

неравенство. равносильное исходному.

Таким образом, если Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , то неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства (1)

и

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства (2)

(или Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства ) равносильны.

Доказательство: Пусть Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

произвольное решение неравенства (1). Тогда Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

- истинное числовое неравенство. Умножим обе его части на число Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

(по условию это число существует, ибо функция Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

имеет решение при всех Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

из области определения неравенства (1)). На основании свойства 4 числовых

неравенств заключаем, что числовое неравенство Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

тоже истинное.

Обратно, пусть Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства -

произвольное решение неравенства (2), значит Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

-истинное числовое неравенство. Умножив обе части этого неравенства на число Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

по свойству 4 числовых неравенств получим истинное числовое неравенство Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

.

Итак, произвольное решение неравенства (1) является решением неравенства (2)

и произвольное решение неравенства (2) является решением неравенства (1).

Теорема доказана.

Следствие. Если обе части неравенства умножить (или разделить) на одно и

тоже отрицательное число, изменив знак неравенства на противоположный, то

получится неравенство, равносильное данному.

Теорема 21. Пусть дано неравенство Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, причем Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

при всех Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства из области

определения неравенства. Если обе части неравенства возвести в одну и ту же

натуральную степень Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

и при этом знак неравенства оставить без изменения, то получится неравенство

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства ,

равносильное данному.

Доказательство: пусть Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

- произвольное решение неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

. Причем Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

(по условию). Тогда Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

- истинное числовое неравенство. Но по свойству 17 числовых неравенств получаем,

что числовое неравенство Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

тоже истинно. Что и требовалось доказать.

Замечание. При выполнении тождественных преобразований возможно изменение

области определения выражения. Например, при приведении подобных членов, при

сокращении дроби может произойти расширение области определения. При решении

неравенства в результате тождественных преобразований может получиться

неравносильное неравенство. Поэтому после выполнения тождественных

преобразований, которые привели к расширению области определения неравенства,

из найденных решений нужно отобрать те, которые принадлежат области определения

исходного неравенства.

3. Корень Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства - й степени. Иррациональные неравенства.

Определение. Корнем Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

- й степени из действительного числа Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

называется действительное число Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

такое, что Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

В частности, если Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, то из Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства получаем,

что Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства или Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

. Если Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, то из Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства получаем,

что Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства . Заметим, что

если Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства - четное, а Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, то по свойствам действительных чисел не существует действительных Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

таких, что Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства . Если Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

- четное, а Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , то

существует ровно два действительных различных корня Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

- й степени из Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Положительный корень обозначается через Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

- арифметический корень Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

- й степени из Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства ,

отрицательный Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Если Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , то при любом Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

существует единственный корень Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

- й степени из Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства -

число Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Если, Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства - нечетное, то

для любого действительного числа Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

существует единственный корень Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

- й степени из Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Этот корень называется арифметическим корнем Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

- й степени из числа и обозначается Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

.

Итак:

1. Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства - четное, Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства - арифметический корень Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства - й степени из неотрицательного числа Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

2. Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства - нечетное, Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

- любое действительное число, Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

- арифметический корень Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

- й степени из действительного числа Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

.

Значит, если показатель корня - число нечетное, то действия с такими корнями не

вызывают затруднений (Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

имеет тот же знак, что и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

), Основной случай для исследования - когда Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

- четное.

Пусть функция Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства -

иррациональная, т.е. задается с помощью иррационального алгебраического

выражения и не может быть задана с помощью рационального алгебраического

выражения. Иррациональным неравенством называется неравенство вида Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

. Для того, чтобы найти множество решений иррационального неравенства,

приходится, как правило, возводить обе части неравенства в натуральную степень.

Несмотря на внешнюю схожесть процедуры решения иррационального уравнения и

иррационального неравенства, между ними существует большое отличие. При решении

иррациональных уравнений можно не заботиться о том, чтобы после возведения в

степень получилось уравнение, эквивалентное исходному: алгебраическое уравнение

имеет конечное число корней, из которых проверкой нетрудно отобрать решения

исходного иррационального уравнения.

Множество решений неравенства представляет собой, как правило, бесконечное

множество чисел, и поэтому непосредственная проверка решений путем

подстановки этих чисел в исходное неравенство становится принципиально

невозможной. Единственный способ, гарантирующий правильность ответа,

заключается в том, что мы должны следить за тем, чтобы при каждом

преобразовании неравенства у нас получалось неравенство, эквивалентное

исходному.

Решая иррациональные неравенства следует помнить, что при возведении обеих

его частей в нечетную степень всегда получается неравенство, эквивалентное

исходному неравенству. Если же обе части неравенства возводить в четную

степень, то будет получаться неравенство, эквивалентное исходному и имеющее

тот же знак, лишь в случае, если обе части исходного неравенства

неотрицательны.

4. Решение простейших иррациональных неравенств

Если иррациональное неравенство содержит один радикал, то всегда можно привести

его к равносильному неравенству, в котором радикал будет находиться в одной

части неравенства, а все другие члены неравенства - в другой его части, то есть

неравенству вида Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

или Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , где Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства - рациональные

алгебраические выражения относительно переменной Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

. Привидение иррационального неравенства, содержащего один радикал к виду

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства (1)

или

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства (2),

называется уединением радикала.

Разобьем простейшие неравенства на две группы:

I – неравенства, содержащие радикал четной степени, т.е. Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

II - неравенства, содержащие радикал нечетной степени, т.е. Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

I. Рассмотрим решение неравенств вида (1). Ясно, что всякое решение этого

неравенства является в то же время решением неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

(при этом условии имеет смысл левая часть неравенства) и решением неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

(поскольку Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства ).

Значит, неравенство

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства (3)

равносильно системе неравенств:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

где Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

следствия неравенства (3). Так как в области, определяемой первыми двумя

неравенствами этой системы, обе части третьего неравенства системы определены и

принимают только неотрицательные значения, то их возведение в квадрат на

указанном множестве есть равносильное преобразование неравенства. В результате

получаем, что неравенство (3) равносильно системе неравенств:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Таким образом, мы вывели теорему о решении неравенств вида (3).

Теорема 1. Неравенство вида Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства равносильно системе неравенств:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Аналогично для неравенств вида Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Теорема 2. Неравенство вида Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства равносильно системе неравенств

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Рассмотрим теперь неравенства вида (2), т.е.

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства (4)

Оно равносильно системе

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства (5)

Но в отличие от неравенства (3) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

может здесь принимать как положительные, так и отрицательные значения. Поэтому,

рассмотрев систему (5) в каждом из двух случаев Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , получим

совокупность систем:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

В первой их этих систем последнее неравенство можно опустить как следствие

двух первых неравенств. Во второй системе обе части последнего неравенства

можно возвести в квадрат (так как обе его части положительны).

Итак, неравенство (4) равносильно совокупности двух систем неравенств

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Заметим, что второе неравенство второй системы можно опустить - оно является

следствием последнего неравенства системы.

Теорема 3. Неравенство вида Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства равносильно совокупности двух систем неравенств

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Аналогично.

Теорема 4. Неравенство вида Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства равносильно совокупности двух систем неравенств

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Неравенства вида Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

являются частными случаями рассмотренных выше неравенств, когда Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

.

Пример 1. Решим неравенство

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Решение. Заданное неравенство - неравенство вида (3), поэтому по теореме

1 оно равносильно системе неравенств:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Так как квадратный трехчлен Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

имеет отрицательный дискриминант и положительный старший коэффициент, то он

положителен при всех значениях Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

. Поэтому решения последней системы таковы: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

.

Ответ: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Пример 2. Решить неравенство

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Решение. По теореме 3 наше неравенство эквивалентно совокупности систем

неравенств

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Применим метод интервалов для решения последней конструкции неравенств.

Решение первой системы:

Второй:

Получаем совокупность Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Ответ: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Пример 3. Решить неравенство

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Решение. По теореме 1 наше неравенство эквивалентно системе

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Последнее неравенство системы выполняется всегда. если Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Итак, решением неравенства является Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства исключая Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Ответ: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

II. Рассмотрим теперь неравенства, содержащие радикал нечетной степени, т.е. Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

. Решение также проводится также путем последовательного возведения обеих частей

неравенства в соответствующую степень и преобразования его в неравенство, не

содержащее радикалов. При возведении неравенства в нечетную степень

эквивалентность не нарушается. Имеют место следующие эквивалентные

преобразования:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

При Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства при возведении в степень Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства знак не изменится, т.к. Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства . Значит Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства при Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства может быть любое,

т.к. под знаком радикала нечетной степени может стоять как отрицательная, так и

положительная функция.

Пример 4. Решить неравенство

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Решение. Возведем в куб обе части неравенства:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

или

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Решим полученное неравенство методом интервалов

Ответ: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

5. Решение иррациональных неравенств, содержащих переменную под знаком двух и

более радикалов четной степени

Пусть дано иррациональное неравенство

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства (1)

В неравенстве (1) левые и правые части положительные, поэтому при возведении

в четную степень эквивалентность не нарушается, если подкоренные выражения

будут неотрицательны. Поэтому имеют место следующие эквивалентные

преобразования:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства (2)

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства (3)

Пример 1. Решить неравенство

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Решение. Заменим данное неравенство эквивалентной системой неравенств

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

и далее

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

откуда получаем решение неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Ответ: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Пример 2. Решить неравенство

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Решение. Предварительно упростим данное неравенство. умножив его на

положительное выражение Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

(т.к. мы рассматриваем всегда Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

). Проведем затем эквивалентные преобразования:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

или

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

заменяем неравенство равносильной системой неравенств:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

откуда получаем

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

решением последнего неравенства системы является объединение Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , а решением всей

системы, а в силу равносильности проведенных преобразований и исходного

неравенства, будет луч Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

.

Ответ: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Пример 3. Решить неравенство

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Решение. Перепишем неравенство так, чтобы левая и правая его части были

неотрицательными

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства всегда

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

и решим его, используя ранее рассмотренные эквивалентные преобразования:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

откуда получаем

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

последнее неравенство системы является уже знакомым нам неравенством вида Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

и решая его возведением в квадрат, получаем Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

.

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Ответ: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Пример 4. Решим неравенство

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Решение. Это неравенство равносильно следующей системе неравенств. где

первые четыре неравенства являются ОДЗ

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

или

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Так как Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , то Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , а потому Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства . Далее Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , поэтому Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства . Значит, Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , и тем более Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Но Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , следовательно.

второе неравенство нашей системы выполняется при любых допустимых значения Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

из ОДЗ исходного неравенства, т.е. система, а вместе с ней и исходное

неравенство имеют решение Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

.

Ответ: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Пример 5. Решить неравенство

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Решение. Правая часть данного неравенства неотрицательная, поэтому левая

его часть должна быть положительной. В противном случае неравенство не имеет

смысла. Учитывая это, проведем следующие эквивалентные преобразования:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

второе неравенство имеет смысл при любом Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

из ОДЗ, т.е. при Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

если упростить третье неравенство системы, то получим

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

или

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Последнее неравенство системы имеет положительную левую часть при Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, значим имеем право возвести неравенство в квадрат и затем легко решаем его,

получаем

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Ответ: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

6. Решение иррациональных неравенств, содержащих переменную под знаком двух и

более радикалов нечетной степени

Рассмотрим решение неравенств, содержащих переменную под знаком двух

радикалов нечетной степени. Решение проводится также путем последовательного

возведения обеих частей неравенства в соответствующую степень и

преобразования его в неравенство, не содержащее радикалов. При возведении

неравенства в нечетную степень эквивалентность не нарушается. Имеют место

следующие эквивалентные преобразования:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Пример 1. Решить неравенство

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Решение. Возводим обе части неравенства в куб:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Ответ: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Рассмотрим отдельно решение неравенств вида:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

После возведения его в куб получим неравенство

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

.

Многократное возведение в куб неравенства в общем случае не приводит к

освобождению от радикалов. Для решения таких неравенств целесообразно

использовать метод интервалов. Суть его заключается в следующем.

Пусть требуется решить неравенство вида:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства (1)

или

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства (2)

Сначала установим, при каких значениях переменной левая часть неравенства

равна правой его части, то есть решим иррациональное уравнение, которое

назовем соответствующим

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства (3)

Далее находим область определения данного неравенства (она совпадает с областью

определения соответствующего уравнения). Затем наносим корни уравнения (3) на

числовую ось, на которой отмечаем также область определения неравенства. Пусть,

например, область определения неравенства (1) или (2) состоит из двух числовых

промежутков Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

- корни уравнения (3).

Корни уравнения (3) разбивают область определения неравенства на промежутки

знакопостоянства. Функция меняет знак при переходе через корень нечетной

кратности, а в промежутках между корнями знак функции постоянный. В

рассматриваемом на рисунке примере такими числовыми промежутками будут

промежутки Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Далее определяем в каждом из отмеченных числовых промежутков знак функции Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

. Для определения знака функции достаточно взять любое число из соответствующего

промежутка. подставить в функцию вместо переменной Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

и установить знак полученного числового выражения. Те числовые промежутки, в

которых функция положительная, будут решением неравенства (1), ибо любое

значение переменной, взятое из этих числовых промежутков, обращает его в

истинное числовое неравенство. Остальные числовые промежутки образуют множество

решений неравенства (2).

Пример 2. Решить неравенство

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Решение. Сначала находим решение соответствующего уравнения

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

возведем уравнение в куб:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Так как по условию выражение Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

должно равняться Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства ,

то, сделав соответствующую замену, получим:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Возведем уравнение в куб и найдем искомые значения переменной: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Проверка 1.

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства - ложно, корень Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства - посторонний.

Проверка 2.

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства - истинно, Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства - корень уравнения.

Областью определения неравенства является множество действительных чисел.

Корень соответствующего уравнения разбивает числовую ось на два числовых

промежутка:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Взяв любое число (например, Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

) из первого промежутка и подставив в неравенство, получим Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

. Значит, числовой промежуток не входит в решение неравенства. Значение Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, взятое из числового промежутка Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, обращает данное неравенство в истинное числовое неравенство Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

. Значит, числовой промежуток Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

является решением неравенства.

Ответ: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Пример 3. Решить неравенство

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Решение. Решим соответствующее уравнение

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

после возведения в куб обеих частей уравнения получим

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

сделаем подстановку Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства получим уравнение

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Отмечаем корни на числовой оси

Областью определения неравенства являются все действительные числа, поэтому

рассматриваем три числовых промежутка: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

. Пусть Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , тогда Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

- ложное числовое неравенство. Значит числовой промежуток Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

не входит в решение. Пусть Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, тогда Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства - истинное

числовое неравенство и числовой промежуток Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

входит в решение. Аналогично, числовой промежуток Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

тоже входит в решение.

Ответ: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Пример 4. Решить неравенство

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Решение. Возведем в куб части неравенства:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

откуда

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

ОДЗ неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства или Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

При значения Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства всегда, а Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства . Значит последнее неравенство истинно при Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Ответ: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Пример 5. Решить неравенство

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Решение. Возведем обе части неравенства в куб, предварительно перенеся Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

в правую часть:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Последнее неравенство эквивалентно системе неравенств

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

или

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Решением последней системы является Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Ответ: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

7. Решение иррациональных неравенств с параметрами

Параметром называют такую переменную, значения которой постоянны в пределах

рассматриваемой задачи .

Значения параметров Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, для которых функции Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства определены,

называются множеством допустимых значений параметров.

Неравенство, содержащее параметры, только тогда считается решенным, когда

указано множество всех его решений при произвольной допустимой системе

значений параметров. Решение параметрических иррациональных неравенств

рассмотрим на примерах. Чтобы проанализировать все допустимые значения

параметров и найти соответствующие искомые значения переменной, целесообразно

данное неравенство заменить эквивалентной совокупностью неравенств, как это

будет показано ниже на примерах.

Пример 1. Решить и исследовать неравенство:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства (1)

Решение. Найдем ОДЗ неравенства (1) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

. Неравенство (1) заменим эквивалентной совокупностью неравенств

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Ясно, что второе неравенство будет истинно при любом Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

из ОДЗ, т.к. Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

. Первое неравенство совокупности имеет и правую и левую положительные части.

Возведем в квадрат обе его части.

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Все значения Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства будут принадлежать ОДЗ, так как Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , значит Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Ответ: 1. Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства ; 2. Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Пример 2. Решить неравенство

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Решение. Легко видеть, что при Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

данное неравенство не имеет решений, т.к. получаем положительную левую часть

меньше отрицательно правой. что не имеет смысла. Рассмотрим неравенство при Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

. ОДЗ неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Неравенство имеет смысл лишь при Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

. Получаем систему неравенств, эквивалентную исходному неравенству:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Решим последнее неравенство системы. Видим, что оно имеет смысл лишь при Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

. Возведем в квадрат обе части неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства при Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Сравним Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , чтобы определить верхнюю границу значений Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

при Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства значит Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства >Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Ответ: если Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , то Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

если Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства . то Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Пример 3. Решить неравенство

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Решение. Данное неравенство перепишем так

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства (1)

Легко видеть, что при а = 0 неравенство решения не имеет. Рассмотрим значение

параметра а > 0 и а < 0: левая и правая части неравенства положительные,

поэтому при возведением неравенства в квадрат получим неравенства,

эквивалентное данному в области его определения. При a < 0 данное

неравенство тождественно истинное в области его определения (левая часть

неотрицательная, а правая отрицательная). Поэтому данное неравенство можно

заменить следующей эквивалентной совокупностью систем неравенств:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Рассмотрим неравенство (2). После выполнения преобразований получим:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

При a > 0 значения х = а и х = 0 не удовлетворяют неравенству, а при

всех значениях 0 < x < a указанное неравенство тождественно истинное,

поэтому первая система совокупности эквивалентна системе:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Итак, решение неравенства (1)

1) если а > 0 0 < x < a

2) если а = 0 нет решений

3) если a < 0 a £ x £ 0

Пример 4. Решить неравенство:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Решение. Возводим неравенство в квадрат. Так как левая и правая части

неравенства неотрицательны, то эквивалентность не нарушается в области

определения неравенства. Первый радикал имеет смысл при x £ а, второй при

x £ b. При этих же значениях переменной имеет смысл и выражение, стоящее

в правой части неравенства.

Итак,

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

равносильно системе

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

но

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

,

значит последнее неравенство системы равносильно неравенству:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

или

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

А система равносильна системе

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

* выполняется, если оба множителя под корнем больше нуля или оба меньше нуля,

значит наша система равносильна совокупности двух систем:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

после выполнения преобразований получаем:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Видим, что в первой системе может быть два случая:

1) a ³ b,

2) b ³ a.

В первом случае решением системы будет x < b, а во втором x < a.

Ответ: 1) a ³ b x < b

2) a £ b x < а

8. Решение иррациональных неравенств, способом введения новой переменной.

Иррациональные неравенства, как и иррациональные уравнения можно решать

способом введения новой переменной. Рассмотрим использование этого метода на

примерах.

Пример 1. Решить неравенство:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Решение. Положив Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, находим что х2 + 5х + 4 = у2 – 24, тогда неравенство (1)

преобразуется к виду:

у2 – 5y – 24 < 0

и далее решим уравнение:

у2 – 5y – 24 = 0

D = 25 + 96 = 121

y1 = -3, y2 = 8

получаем (у – 8)(у + 3) < 0.

Решением этого неравенства является промежуток -3 < y < 8.

Мы пришли к следующей системе неравенств:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Так как Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства при всех

допустимых значениях х, то тем более Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

при всех х их ОДЗ неравенства (1), а поэтому достаточно решить

неравенство:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Это неравенство равносильно системе

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Так как неравенство х2 + 5х + 38 ³ 0 выполняется при любых

значениях х (D = 25 – 4 × 28 < 0 и а = 1 > 0), то последняя

система равносильна неравенству:

х2 + 5х + 38 < 0

или

(х + 9)(х – 4) < 0

откуда методом интервалов находим решение неравенства (1)

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Ответ: х Î ]-9; 4[

Неравенство (1) – неравенство вида

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Здесь применима подстановка Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

и неравенство заменяется равносильным ему неравенством:

у2 – ky + d – c < 0, которое легко разрешимо.

Рассмотрим неравенство вида:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , где можно применить подстановку Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Пример 2. Решить неравенство:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Решение. Найдем ОДЗ неравенства: х £ 5. Положим Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, тогда у > x – 3, y ³ 0. Выразим х через у: у2 = 5 – х

Þ х = 5 – у2.

Получаем систему:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Откуда:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Значения x < 4 принадлежат ОДЗ.

Ответ: x < 4.

Пример 3. Решить неравенство

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Решение. Найдем ОДЗ неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

при х ³ 2 второе и третье неравенства системы истинны. ОДЗ х ³ 2.

Пусть Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , тогда исходное неравенство примет вид:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства (1)

Так как под радикалами в левой части неравенства (1) стоят полные квадраты,

то оно может быть представлено в следующем эквивалентном виде:

|t + 1| - |t – 1| > 1

Разобьем решение на три промежутка:

1) t £ -1

-t – 1 + t – 1 > 1 Æ

2) –1 < t £ 1

t + 1 + t – 1 > 1

2t > 1

t > ½

3) t > 1

t + 1 – t + 1 > 1 2 > 1 – истинно

Решением неравенства на всех трех промежутках будет t > ½

Подставляем Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Эти значения принадлежат ОДЗ.

Ответ: x > 2,25.

Пример 4. Решить неравенство:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Решение. Положим Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , тогда Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства и мы получаем неравенство:

у2 – у – 2 >0,

откуда находим y < -1, y>2.

Теперь задача свелась к решению двух неравенств:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Первое неравенство не имеет корней во множестве действительных чисел,

поскольку под знаком возведения в дробную степень может содержаться только

неотрицательное число, а любая степень неотрицательного числа неотрицательна.

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства (1)

Пусть a < 0. В школьном курсе рациональная степень числа а не определяется, и

это не случайно. Пусть (1) верно, тогда:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Противоречие.

Итак, получаем: левая положительная часть меньше отрицательной правой, что не

имеет смысла.

Решим неравенство

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Возведем обе части неравенства в пятую степень, получим x – 2 > 32, откуда x

> 34.

Ответ: x > 34.

9. Способ домножения обеих частей иррационального неравенства на некоторое

число, либо выражение.

Этот способ мы можем использовать, основываясь на теоремах 19 и 20 из

параграфа «Неравенства и их основные свойства».

Пример 1. Решить неравенство:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства (1)

Решение. Уединение радикала и возведение обеих частей полученного

неравенства в квадрат привело бы к громоздкому неравенству. В то же время, если

проявить некоторую наблюдательность, то можно заметить, что заданное

неравенство легко сводится к квадратному. Предварительно найдем ОДЗ

неравенства:

2х2 – 3х + 2 ³ 0

откуда получаем х – любое действительное число. Домножим обе части

неравенства (1) на 2 получим

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

и далее

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Полагая Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , получим у2 – 2у - 8 ³ 0, откуда у £ -2, у ³ 4.

Значит, неравенство (1) равносильно следующей совокупности неравенств:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Второе неравенство системы имеет решения х £ -2, х ³ 3,5, а первое

– не имеет решений, так левая часть неравенства неотрицательна, а правая

отрицательна, это противоречит смыслу неравенства.

Все решения второго неравенства принадлежат ОДЗ неравенства (1) и получены

при переходах к равносильным неравенствам.

Ответ: х £ -2, х ³ 3,5.

Пример 2. Решить неравенство

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства (1)

Решение. ОДЗ неравенства:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Домножим обе части неравенства на выражение

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , имеющее ту же ОДЗ , что и неравенство (1).

Получим:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

или:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Последнее неравенство всегда истинно на ОДЗ, т. к. –3 всегда будет меньше

положительной правой части неравенства.

Ответ: х ³ 1.

Пример 3. Решить неравенство

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Решение. Найдем ОДЗ неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Домножим обе части неравенства на Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства :

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Последнее неравенство равносильно совокупности:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Из первой системы получаем x < -2, а решением второй системы является

промежуток Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Объединяя их получаем:

Ответ: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

10. Метод выделения полного квадрата в подкоренных выражениях при решении

иррациональных неравенств, либо разложения подкоренного выражения на множители.

Пример 1. Решить неравенство

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Попробуем отметить какие – либо особенности заданного неравенства, которые

могли бы указать путь к решению. Такие особенности есть, а именно:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Решение. Найдем ОДЗ исходного неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

На промежутке [-1;4] третье и четвертое неравенства системы истинны.

Значит, ОДЗ х Î [-1;4].

Перепишем заданное неравенство так:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

откуда Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Но Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , поэтому получаем:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

или:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

В ОДЗ правая часть неравенства всегда положительна, поэтому возведем в

квадрат обе части неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

решение этого неравенства х Î [0; 3]. Этот промежуток принадлежит ОДЗ.

Ответ: х Î [0; 3].

Пример 2. Решить неравенство:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Решение. Найдем ОДЗ неравенства:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

откуда получаем x £ 1, х ³ 5, х = 2

Перепишем наше неравенство следующим образом:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Поскольку обе части неравенства положительны и имеют смысл на ОДЗ, возведем в

квадрат обе части этого неравенства, получим:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Правая часть полученного неравенства на ОДЗ всегда положительна, поэтому

имеем право возвести обе части его в квадрат и получим равносильное

неравенство:

(х – 2)2(х – 5)(х – 1) £ 9(х – 2)2(х – 1)2

или:

(х – 2)2(х – 1) (х – 5 – 9х + 9)£ 0

(х – 2)2(х – 1) (4 – 8х)£ 0

откуда методом интервалов получаем: х £ ½, х ≥ 1

Учитывая ОДЗ, получаем

Ответ: х £ ½, х = 1, х ≥ 5, х = 2

11. Решение иррациональных неравенств путем проб, выводов.

Пример 1. Решить неравенство:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства (1)

Решение. Область определения неравенства (1): 2 £ х £ 3.

Прежде, чем возводить в квадрат обе части неравенства (1), необходимо

убедиться в том, что обе его части неотрицательны.

Однако, оказывается, что это не так.

Действительно, так как 2 £ х £ 3, то 1 £ х – 1 £ 2 и

3 £ 6 – х £ 4. А это значит, что Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

или Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства . Но Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

. Таким образом, при всех значениях х из отрезка 2 £ х £ 3

неравенство (1) выполняется. Итак, 2 £ х £ 3 - решение

неравенства.

Пример 2. Решим неравенство:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Решение. Найдем ОДЗ неравенства:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

откуда получаем, что ОДЗ неравенства х = 2 – единственная точка.

Подстановкой легко проверить, что х = 2 является решением исходного

неравенства.

Ответ: х = 2.

12. Решение более сложных примеров.

Пример 1. Решить неравенство

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Решение. Используем метод интервалов. Решим соответствующее уравнение.

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Решением уравнения являются значения переменной х = 0 и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

при любом действительном значении параметра а.

Корни соответствующего уравнения разбивают числовую ось на промежутки

знакопостоянтства, в каждом из которых неравенство или тождественно истинное,

или тождественно ложное.

а) если a > 0, то Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

и числовая ось разбивается на следующие промежутки знакопостоянства: x < 0, Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Рассмотрим промежуток Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

. Возьмем значение х = а из этого промежутка и подставим в данное

неравенство. Получим: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

- истинное числовое неравенство. Следовательно, промежуток Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

принадлежит решению. Любое значение переменной х, взятое из промежутка

знакопостоянства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, обращает данное неравенство в ложное числовое неравенство. Например, при Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

имеем ложное числовое неравенство Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

.

Следовательно, промежуток Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства не принадлежит решению.

Подставив, например, х = -а, взятое из промежутка знакопостоянства x < 0, в

данное неравенство, получим истинное числовое неравенство Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

. Значит, числовой промежуток x < 0 принадлежит решению. Итак, при a > 0

решением неравенства является объединение двух числовых промежутков x < 0 и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

.

б) если a < 0, то Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

и числовая ось разбивается на промежутки знакопостоянства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

. Как и в первом случае, устанавливаем, что данное неравенство тождественно

истинное в промежутках Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

и x > 0 и тождественно ложное в промежутке Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

. Следовательно, при a < 0 решением неравенства будет объединение двух

числовых промежутков Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

и x > 0.

в) при а = 0 Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Получим два промежутка знакопостоянства: x < 0 и x > 0, каждый из

которых, как легко установить принадлежит решению.

Ответ: 1) при Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

2) при Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства .

Пример 2. Решить неравенство

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

ОДЗ: 5х – 7 ≥ 0

log57 ≤ x < +∞

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Возводим обе части в квадрат:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

решением последнего неравенства является промежуток х ≤ 2. Учитывая ОДЗ

получаем решение исходного неравенства log57 ≤ x ≤ 2.

Ответ: log57 ≤ x ≤ 2.

13. Подборка задач по теме «решение иррациональных неравенств».

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

14. Классические неравенства.

Рассмотрим некоторые наиболее важные для математического анализа неравенства.

Эти неравенства служат аппаратом, который повседневно используют специалисты,

работающие в этой области математики.

Теорема о среднем арифметическом и среднем геометрическом.

Теорема 1. Среднее арифметическое любых двух неотрицательных чисел а и b

не меньше их среднего геометрического, т. е.:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства (1)

Равенство имеет место в том и только том случае, когда a = b.

Доказательство. Поскольку квадратный корень может доставить немало

хлопот, мы постараемся от него избавиться, положив a = c2, b = d

2, что допустимо, ибо в теореме 1 предполагается, что числа а и b

неотрицательны. При этом соотношение (1), в справедливости которого для

произвольных неотрицательных чисел а и b мы хотим убедиться, примет следующий

вид:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , (2)

где с и d – произвольные действительные числа.

Неравенство (2) имеет место в том и только том случае, когда

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства ,

что в силу основных правил, относящихся к неравенствам, равносильно тому, что

с2 + d2 – 2cd ≥ 0 (3)

Но с2 + d2 – 2cd = (с – d)2 , значит неравенство (3) равносильно

(с – d)2 ≥ 0 (4)

Так как квадрат любого действительного числа неотрицателен, то ясно, что

соотношение (4) всегда имеет место. Значит справедливы и неравенства (3),

(2), (1). Равенство в формуле (4), а значит и в формуле (1) достигается в том

и только в том случае, когда c – d = 0, т.е. c = d, или, иначе говоря, когда

a = b.

Покажем теперь, что теорему 1 можно вывести геометрическим путем простого

сравнения некоторых площадей.

Рассмотрим график функции у = х, изображенный на рисунке.

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Пусть S и Т точки прямой у = х с координатами (с, с) и (d, d). Рассмотрим

также точки Р(с, 0), Q(0, d), R(c, d). Так как длина отрезка ОР равна с, то

длина отрезка PS также равна с. Поэтому площадь ∆OPS, полупроизведение

длин его основания и высоты равна Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

.

Рассмотрим теперь прямоугольник OPRQ. Он полностью покрывается ∆OPS и

∆OQT, так что

SOPS + SOQT ≥ SOPRQ (5)

Так как площадь прямоугольника OPRQ – произведение длин его основания и

высоты – равна сd, то при помощи алгебраических символов соотношение (5)

можно записать так:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Кроме того, легко видеть, что равенство достигается только тогда, когда

площадь ∆TRS равна нулю, что возможно только при условии совпадания

точек S и Т, т. е. когда с = d.

Теорема 2. Среднее арифметическое любых трех неотрицательных чисел a, b и

с не меньше их среднего геометрического, т.е.

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства (1)

Равенство достигается в том случае и только том случае, когда а = b = с.

Доказательство: пусть а = х3, b = у3, с = z3.

Подставим эти значения в неравенство (1):

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , (2)

что равносильно неравенству

x3 + y3 + z3 – 3xyz ³ 0 (3)

Мы докажем теорему 2, если установим, что неравенство (3) имеет место для

произвольных неотрицательных чисел x, y, z.

x3 + y2 + z2 – 3xyz = (x + y + z + )(x2 + y2 + z2 – xy – xz – yz) (4)

x + y + z – неотрицательное число, покажем, что

x2 + y2 + z2 – xy – xz – yz ³ 0 (5)

Выпишем три неравенства x2 + y2 ³ 2xy, x2

+ z2 ³ 2xz, y2 + z2 ³ 2yz (эти

неравенства истинны по теореме 1) и сложим их почленно:

2(x2 + y2 + z2) ³ 2(xy + xz + yz)

это неравенство равносильно неравенству (5). Равенство достигается тогда и

только тогда, когда x = y = z.

Мы получили, что в (4) левая часть ³ 0, т.е. неравенство (3) имеет

место. Но неравенство (3) равносильно (1). Теорема доказана. Условие x = y =

z равносильно условию a = b = c.

Теорема будет верна и для n чисел, примем ее без доказательства.

Теорема 3. Среднее арифметическое любых n неотрицательных чисел а

1, а2,.аn не меньше их среднего геометрического,

т.е.

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Равенство достигается в том и только том случае, когда а1 = а2 = аn.

Неравенство Коши.

а) Двумерный вариант:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства (1)

для любых неотрицательных чисел a, b c, d.

Доказательство. Так как a, b, c, d – неотрицательные, то ac + bd ³ 0 и

имеем право возвести в квадрат обе части неравенства (1):

(a2 + b2)(c2 + d2) ³ (ac + bd)2 (2)

В первую очередь отметим, что неравенство a2 + b2 ³

2ab, на котором основывались все выводы в предыдущих теоремах, является простым

следствием тождества a2 – 2ab + b2 = (a – b)2,

верного для всех действительных чисел. Рассмотрим произведение

(a2 + b2)(c2 + d2)

Произведя умножение, получим многочлен a2c2 + b2d2 + a2d2 + b2c2,

Совпадающий с тем, который получается после раскрытия скобок в выражении (ac +

bd)2 + (bc – ad)2

Отсюда получаем

(a2 + b2)(c2 + d2) = (ac + bd)2 + (bc – ad)2 (3)

Так как квадрат (bc – ad)2 неотрицателен, то из (3) следует неравенство

(a2 + b2)(c2 + d2) ³ (ac + bd)2

для любых действительных чисел a, b, c, d.

Мы получили неравенство (2) – неравенство Коши для любых действительных чисел

a, b, c, d.

Для любых неотрицательных чисел a, b, c, d неравенство Коши примет вид (1).

Из соотношения (3) вытекает, что равенство в (2), а значит и в (1)

достигается тогда и только тогда, когда

bc – ad = 0 (4)

В этом случае говорят, что две пары чисел (a, b) и (c, d) пропорциональны.

При с ¹ 0 и d ¹ 0 условие (4) можно записать следующим образом:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Геометрическая интерпретация.

Рассмотрим треугольник, изображенный на рисунке.

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Очевидно, что длины отрезков OР и OQ и PQ определяются равенствами

ОР = (a2 + b2)½

ОQ = (c2 + d2)½

РQ = [(a – c)2 + (b – d)2]½

Обозначим угол между сторонами ОР и OQ через q. На основании теоремы

косинусов имеем:

PQ2 = OP2 + OQ2 – 2OP × OQ cosq

Подставляя значения OP, OQ, и РQ и упрощая полученное выражение, имеем

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Поскольку значение косинуса всегда заключено между –1 и +1, мы имеем

-1 £ cos q £ 1

или

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

значит

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

А это двумерный вариант неравенства Коши. Кроме того, мы видим, что равенство

здесь достигается тогда и только тогда, когда сos q =1, т.е. когда q = 0

или q = p, - другими словами в том и лишь в том случае, когда точки О, Р, и Q

лежат на одной прямой. При этом должно иметь место равенство подъемов прямых

ОР и OQ; иначе говоря, если с ¹ 0 и d ¹ 0, то должно быть

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

б) Трехмерный вариант неравенства Коши.

Вышеприведенная интерпретация неравенства Коши для двумерного случая хороша еще

и тем, что позволяет нам при помощи геометрической интуиции легко сообразить,

какой вид будут иметь аналогичные результаты, относящиеся к более сложному

случаю любого числа измерений. Перейдем к случаю трехмерного пространства.

Пусть Р(а1, а2, а3) и Q(b1, b2

, b3) – две точки, не совпадающие с началом координат О (0, 0, 0).

Тогда косинус угла q между прямыми ОР и OQ будет определяться равенством

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

которое, в силу того, что сosq £ 1, приводит к трехмерному варианту

неравенства Коши для неотрицательных чисел аi и bi, i =

1, 2, 3

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

(1)

Равенство здесь достигается тогда и только тогда, когда три точки О, Р и Q

лежат на одной прямой, что выражается соотношениями

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

имеющими смысл при условии, что все числа bi, стоящии в знаменателях отличны

от нуля.

Чисто алгебраическое доказательство трехмерного варианта неравенства Коши (1)

можно вывести из следующего тождества:

(a12 + a22 + a32)(b12 + b22 + b32) – (a1b1 + a2b2 + a3b3)2 = (a12b22 + a22b12) +

+ (a12b32 + a32b12) + (a22b32 + a32b22) – 2a1b1a2b2 – 2a1b1a3b3 – 2a2b2a3b3 =

= (a1b2 – a2b1)2 + (a1b3 – a3b1)2 + (a2b3 – a3b2)2 (2)

Очевидно, что последнее выражение в (2) неотрицательно, так как оно состоит

из суммы трех неотрицательных членов. Поэтому

(a12 + a22 + a32)(b12 + b22 + b32) – (a1b1 + a2b2 + a3b3)2 ³ 0.

Приведем еще одно доказательство этого неравенства, которое пригодится нам

дальше.

Начнем с основного неравенства (х – у2) ³ 0, которое можно

записать в следующем виде:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства (3)

Неравенство (3) имеет место для любых действительных чисел х и у. Вместо х и

у последовательно подставим в (3) следующие выражения:

сначала:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

затем

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

и, наконец,

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

где ai, bi – действительные числа.

Складывая три полученных таким образом неравенства, имеем

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства ,

что бесспорно равносильно неравенству

(a12 + a22 + a32)½(b12 + b22 + b32)½ ³ a1b1 + a2b2 + a3b3

А это неравенство равносильно неравенству (1) при ai, bi – неотрицательных.

в) n – мерный вариант неравенства Коши будет выглядеть так

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

,

где ai, bi, i = 1, 2, . n – неотрицательные числа.

Неравенство Гёльдера.

Одно из наиболее полезных неравенств математического анализа – неравенство

Гёльдера. Оно утверждает, что для любой системы неотрицательных чисел ai

и bi (i – 1, 2, . , n)

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

(1)

где числа р и q удовлетворяют условию

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства и р > 1

Фактически мы докажем неравенство (1) только для рациональных р и q. Однако

окончательный результат сохраняет силу и для иррациональных р и q.

Начнем с неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства (2)

Оно выводится как частный случай теоремы о среднем арифметическом среднем

геометрическом. Положим, что первые m чисел xi в неравенстве

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

равны некоторому неотрицательному числу х, тогда остается N-m чисел и пусть

они равны неотрицательному числу у, т.е.

x1 = x2 = . = xm = x

xm+1 = xm+2 = . = xn = y

В этом случае теорема о среднем арифметическом и среднем геометрическом для

чисел x1, x2, . , xn примет вид

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

или

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Здесь n – любое целое число, а m – целое число значения которого заключены в

пределах 1 £ m £ n – 1. Отсюда следует, что число m/n может быть

любой рациональной дробью r, принадлежащей интервалу 0 < r < 1. Теперь

последнее неравенство можно переписать так:

rx + (1 – r)y ³ x r y1-r (3)

Это неравенство имеет место для любых неотрицательных чисел х и у и для любой

дроби r, значения которой заключены между 0 и 1. Равенство здесь достигается

тогда и только тогда, когда х = у.

Обозначим число r через 1/р; поскольку 0 < r < 1, то p > 1. Отсюда

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства . Пусть Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , тогда Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

В этих обозначениях неравенство (3) принимает вид

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства (4)

С целью исключить из рассмотрения дробные показатели степени положим

х = ар, у = bр.

При этом неравенство (4) принимает вид

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , где a и b –

неотрицательные числа, а р и q – такие рациональные числа, что Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

. Равенство здесь достигается тогда и только тогда, когда ар = b

р. Итак, мы вывели неравенство (2).

Положим

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

затем

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

и т. д. (как в доказательстве неравенство Коши) и сложим неравенства,

получающиеся после последовательных подстановок этих значений в (2). При этом

получим

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства (5)

Используя равенство Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

, получаем неравенство, равносильное (1). Равенство в (5) достигается тогда и

только тогда, когда все отношения bi/ai равны между

собой.

Неравенство треугольника.

Из геометрии мы знаем, что сумма длин двух сторон треугольника не меньше

длины его третьей стороны. Посмотрим, как можно выразить эту теорему

алгебраически.

Рассмотрим треугольник ORP, расположенный так, как показано на рисунке.

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Геометрическое неравенство ОР + PR ³ OR равносильно алгебраическому

неравенству треугольника

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

(1)

Для доказательства возведем обе части неравенства (1) в квадрат, при этом мы

придем к неравенству, равносильному (1):

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Легко видеть, что последнее неравенство в свою очередь равносильно неравенству:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Но это неравенство является простым следствием неравенства Коши

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства ,

что и доказывает неравенство треугольника.

Равенство в неравенстве треугольника, как и в неравенстве Коши достигается тогда

и только тогда, когда х1 = кх2 и у1 = ку2

, где к – неотрицательный коэффициент пропорциональности.

Доказательство неравенства треугольника можно обобщить, следуя по тому же

пути, что и при выводе неравенства Гёльдера, а именно доказать, что

неравенство

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

имеет место для любых действительных значений xi, yi.

Равенство достигается в том и только том случае, когда числа xi и y

i пропорциональны и коэффициент пропорциональности положителен.

Рассмотрим еще одно доказательство неравенства треугольника, которое можно

использовать также и для получения более общих результатов. Имеет место

тождество

(х1 + х2)2 + (у1 + у2)2 = х1(х1 + х2) + у1(у1 + у2) + х2(х1 + х2) + у2(у1 + у2)

Неравенство Коши в форме, использующей квадратные корни, применим по очереди

к двум выражениям:

х1(х1 + х2) + у1(у1 + у2) и

х2(х1 + х2) + у2(у1 + у2).

Мы получим

(х12 + у12)1/2 [(х1

+ х2)2 + (у1 + у2)2]

1/2 ³ х1(х1 + х2) + у1(у

1 + у2) и

(х22 + у22)1/2 [(х1 + х2)2 + (у1 + у2)2]1/2 ³ х2(х1 + х2) + у2(у1 + у2)

Сложим эти два неравенства

[(х12 + у12)1/2 + (х

22 + у22)1/2]*[(х1

+ х2)2 + (y1 + у2)2]

1/2³ (х1 + х2)2 + (у1 + у

2)2

разделив обе части на общий множитель

[(х1 + х2)2 + (у1 + у2)2]1/2 ,

будем иметь

(х12 + у12)1/2 + (х22 + у22)1/2 ³ [(х1 + х2)2 + (у1 + у2)2]1/2

таким образом, мы еще раз доказали неравенство треугольника. Равенство опять

будет иметь место тогда и только тогда, когда х1 = кх2 и

у1 = ку2, где к – неотрицательный коэффициент

пропорциональности, другими словами, тогда и только тогда, когда три точки О, Р

и Q лежат на одной прямой, причем точки Р и Q расположены по одну сторону от

точки О.

Неравенство Минковского.

Неравенство Минковского утверждает, что для любых неотрицательных чисел х1

, у1, х2, у2 при любом р > 1

(х1р + у1р)1/р + (х2

р + у2р)1/р ³ [(х1 + х

2)р + (у1 + у2)р]1/р

(1)

Неравенство треугольника составляет частный случай неравенства Минковского

для р = 2 и их доказательства подобны.

Запишем тождество

(х1 + х2)р + (у1 + у2)р = [х1(х1 + х2)р-1 + у1(у1 + у2)р-1] ×

× [х2(х1 + х2)р-1 + у2(у1 + у2)р-1]

и применим неравенство Гёльдера к каждому члену правой части этого тождества.

В результате получим:

(х1р + у1р)1/р= [ (х

1 + х2)(р-1)q + (у1 + у2

)(р-1)q]1/q ³ х1(х

1 + х2)р-1 + у1(у1 + у2

)р-1

и

(х2р + у2р)1/р= [ (х

1 + х2)(р-1)q + (у1 + у2

)(р-1)q]1/q ³ х2(х

1 + х2)р-1 + у2(у1 + у2

)р-1

Так как Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , то (p – 1)q = p. Складывая последние два неравенства, имеем

[(х1 + х2)р + (у1 + у2)

р]1/q[(х1р + у1р)

1/р + (х2р + у2р)1/р

] ³ (х1 + х2)р + (у1 + у2

Разделив затем на [(х1 + х2)р + (у1 + у2)р]1/q

получим

(х2р + у2р)1/р + (х1р + у1р)1/р ³ [(х1 + х2)р + (у1 + у2)р]1-1/q

Так как Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , то

последнее неравенство полностью совпадает с требуемым неравенством Минковского

(1).

Знак равенства в неравенстве (1) имеет место тогда и только тогда, когда точки

(х1 у1) и (х2 у2) лежат на одной

прямой с точкой (0, 0).

Аналогично обобщением неравенства Гёльдера и неравенства треугольника можно

получить и неравенство Минковского для двух систем их n неотрицательных чисел х

1, х2, . , хn и у1, у2, . , у

n. Оно имеет вид:

[х1р + х2р +. хnр ]1/р + [у1р + у2р+. + уnр] 1/р ³

³ [(х1 + у1)р + (х2 + у2)р + . +(хn + уn)р]1/р , где р ³ 1

При p < 1 знак неравенства следует изменить на обратный.

ЗАКЛЮЧЕНИЕ.

В дипломной работе изучен и дан анализ самостоятельной работе учащихся наряду

с другими формами организации познавательной деятельности. На основе

изученной психолого-педагогической литературы дается характеристика этих

форм, разработана методика применения самостоятельной работы вместе с иными

формами организации познавательной деятельности на факультативных занятиях в

выпускных классах средней школы, изучены учебные возможности учащихся в

экспериментальной группе, проведена опытно- экспериментальная работа по

включению самостоятельной работы школьников в процесс обучения.

Разработано и проведено 8 занятий по теме «Иррациональные неравенства». На

основе изученной литературы дается анализ иррациональных неравенств и

способов их решения.

Проведение опытно- экспериментальной работы подтверждает выдвинутую гипотезу.

Применение самостоятельной работы учащихся способствует лучшему усвоению

знаний, о чем свидетельствуют результаты контрольной работы, способствует

повышению активности познавательной деятельности учащихся. Конечно, если бы

эксперимент длился дольше, то результаты были бы более ощутимы.

ЛИТЕРАТУРА.

1. Андреева И.Н. Индивидуальные творческие работы учащихся в обучении

// Автореферат, МГПИ- М; 1967

2. Аношнин А.П. Оптимизация форм организации учебной деятельности

школьников на уроке. // Автореферат, ЧГУ- Челябинск: 1986

3. Бабанский Ю.К. Оптимизация процесса обучения // Советская

педагогика- М.: Просвещение

4. Верцинская Н.Н. Индивидуальная работа с учащимися- Минск: 1983

5. Дьяченко В.К. Организационные формы обучения и их развитие.

//Советская педагогика- М: Просвещение, 1985, № 9

6. Дьяченко В.К. Организационная структура учебного процесса и ее

развитие- М: Педагогика, 1989

7. Зотов Ю.Б. Организация современного урока.- М: Просвещение, 1984

8. Лийметс Х.И. Групповая работа на уроке. – М: Просвещение, 1975

9. Махмутов М.И. Вопросы организации процесса проблемного обучения. –

Казань: Издательство Казанского университета, 1972

10. Николаева Т.М. Сочетание общеклассной, групповой и индивидуальной работы

учащихся на уроке как одно из средств повышения эффективности учебного

процесса. //Автореферат, М: 1972

11. Семенов Н.А. О способах организации обучения. //Советская педагогика,

1966, № 11

12. Стрезикозин В.П. Организация процесса обучения в школе. //М:

Просвещение, 1968

13. Уфимцева М.А. Формы организации обучения в современной

общеобразовательной школе. //М: Просвещение, 1986

14. Хабиб О.А. Организация учебно-познавательной деятельности учащихся. –М:

Педагогика, 1979

15. Чередов И.М. Методика планирования школьных форм организации обучения.

–Омск: Педагогика, 1983

16. Чередов И.М. Пути реализации принципа оптимального сочетания форм

организации учебной деятельности в 5-9 классах. //Автореферат, КГУ,

Красноярск, 1970

17. Чередов И.М. Система форм организации в советской общеобразовательной

школе. –М: Педагогика, 1987

18. Чередов И.М. Формы учебной работы в средней школе. – М: Просвещение, 1988

19. Ю.В. Нестеренко и др. Задачи вступительных экзаменов по математике //М:

Наука, 1980

20. Белоносов В.С. Задачи вступительных экзаменов по математике в НГУ

//Новосибирск, НГУ, 1992

21. Литвиненко В.Н., Морднович А.Г. Практикум по элементарной математике.

//М: Просвещение, 1991

22. Литвиненко В.Н. Морднович А.Г. Практикум по решению математических

задач. //М: Просвещение, 1984

23. Вересова Е.Е. и др. Практикум по решению математических задач. //М:

Просвещение, 1979

24. Блох А.Ш., Трухан Т.Л. Неравенства //Минск: Народная Асвета, 1972

25. Задачи повышенной трудности по алгебре и началам анализа //М:

Просвещение, 1990

26. Коровкин П.П. Неравенства //М: Наука, 1974

27. Башмаков М.И. Уравнения и неравенства //М: Наука, 1976

28. Беккенбах Э., Беллман Р. Введение в неравенства //М: Мир, 1965

29. Невежский Г.Л. Неравенства //М: Учпедгиз, 1947

30. Алгебра, 8 класс //М: Просвещение, 1980

ПРИЛОЖЕНИЕ.

1. Введение

Изучая школьную программу, я выяснила, что иррациональные неравенства не

рассматриваются в курсе средней школы. В 11классе изучаются лишь

иррациональные уравнения. Они входят в раздел «Показательные функции», и

учитель может уделить им внимание в течение 2-3 уроков. Однако для тех

учащихся, которые хотят иметь хорошую подготовку для поступления в ВУЗы этого

явно недостаточно. Просматривая программы, предлагавшиеся на вступительных

экзаменах в НГУ и МГУ находим, что кроме иррациональных уравнений в них

предлагается решить и иррациональные неравенства. Например, НГУ:

75 год механико-математический факультет

В-I решить неравенство

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

В-II решить неравенство Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

81 год геолого – геодезический факультет

В-I решить неравенство Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

В-IV решить неравенство Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

81 год физический факультет

В – I решить неравенство Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

В – II решить неравенство Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

МГУ:

78 год механико – математический факультет

В-I решить неравенство Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

79 год физический факультет

В-I решить неравенство Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

78 год химический факультет

В-I решить неравенство Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Цели проведения и написания этого факультатива: подготовить учащихся к

поступлению в ВУЗы, расширить и систематизировать полученные ранее сведения и

решении иррациональных уравнений, научить учащихся решать иррациональные

неравенства, а также отработать технические навыки тождественных

преобразований иррациональных уравнений. Данный материал требует достаточной

логической грамотности учащихся, так как для того, чтобы найти множество

решений иррационального неравенства, приходится, как правило, возводить обе

части неравенства в натуральную степень. Необходимо довести до понимания

учащихся, что несмотря на внешнюю схожесть процедуры решения иррационального

уравнения и иррационального неравенства, между ними существует большое

отличие. При решении неравенства невозможно проверкой установить «лишние»

решения, которые могут появиться при возведении в четную степень.

Единственный способ, гарантирующий правильность ответа, заключается в том,

что мы должны следить за тем, чтобы при каждом преобразовании неравенства у

нас получалось неравенство, эквивалентное исходному. Цель дипломной работы –

оказать конкретную помощь учителю в подготовке учеников к поступлению в

ВУЗы, в более углубленном изучении материала. Самым распространенным методом

обучения решению иррациональных неравенств является выявление типичных

способов решения иррациональных неравенств. Наша задача – дать основные

рекомендации для поиска решения неравенств и приобрести некоторый опыт при

решении.

Занятие№1

Тема: Понятие иррационального неравенства, его особенности.

Цель: дать понятие об иррациональных неравенствах, научить находить ОДЗ

иррациональных неравенств.

I. Вспомнить (вопросы классу):

1) что называется корнем n – ной степени из числа а?

2) Что называется арифметическим корнем n – ной степени из числа а (

а ³ 0)?

3) Какие свойства арифметического корня n – ной степени вы знаете?

II. Самостоятельная работа на 2 варианта

В – I В – II

1) Докажите, что истинно равенство

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

2) Найдите значений корня

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

3) Найдите значение выражения

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

4) Решите уравнения

х3 = 4 х4 = 10

х4 = -10 х3 = -4

х6 = 7 х5 = 6

5) Решите уравнение и неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

6) Найти значения выражения

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

III. Учитель объясняет новый материал, опираясь не знания учащихся.

IV. Найти ОДЗ неравенств (учащиеся решают самостоятельно, затем устно

проверяем ответы)

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

V. Д/з

1 группа самостоятельно разбирает тему «Простейшие иррациональные

неравенства, содержащие радикал четной степени» и пишет доклады по этой теме

по плану:

1) Уединение радикала

2) Решение неравенств вида Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

3) Решение неравенств вида Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

4) Примеры

2 группа повторяет пройденный материал.

Занятие №2

Тема: Простейшие иррациональные неравенства, содержащие переменную под

знаком радикала четной степени.

Цель: Отработать навыки решения иррациональных неравенств, содержащих

переменную под знаком радикала четной степени.

I. Чтение доклада одним из учащихся 1 группы, дополнения остальных учащихся 1

группы, разбор у доски 3 – 4 примеров, которые ребята нашли и решили дома.

II. Следующие неравенства ребята решают самостоятельно, затем в парах

проверяют решения друг у друга.

1)

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Ответ: х ³ Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

2)

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Ответ: х £ -1 и х ³ 1

3)

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Ответ: х ³ Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

4)

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Ответ: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

III. Д/з

1 группа самостоятельно разбирает простейшие иррациональные неравенства,

содержащие переменную под знаком радикала нечетной степени и пишет доклад по

плану:

1) возведение неравенств в нечетную степень;

2) примеры с решениями.

2 группа учит решение иррациональных неравенств, разобранных в классе, решает

неравенства:

1) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

2) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

3) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Занятие №3

Тема: Решение иррациональных неравенств, содержащих переменную под знаком

радикала нечетной степени.

Цель: Закрепление изученного, научить учащихся решать простейшие

иррациональные неравенства, содержащие переменную под знаком радикала нечетной

степени.

I. Повторение

1) Расскажите правила решения неравенств вида

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

а)

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

б)

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

в)

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

г)

2) Решить неравенства (кто-то из учащихся 2 группы решает у доски,

остальные – в тетрадях)

а) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Ответ: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

б) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Ответ: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

II. Разбор нового материала (ребята из 1 группы рассказывают, объясняют свои

примеры).

III. Самостоятельно решить неравенства

1)

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

x(x-3)(x+2)>0

+ - + -
Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

-2 0 3

Ответ: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

2)

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

- + - +

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства 0 Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Ответ: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Ответы проверить в парах.

IV. Подведение итогов занятия: видим, что при возведение неравенств в

нечетную степень эквивалентность не нарушается и под знаком радикала

выражение может принимать любые значения. А в четную степень имеем право

возводить только те неравенства, у которых обе части неотрицательны; под

знаком радикала четной степени может стоять только неотрицательная функция.

V. Д/з

1 группа изучает тему «Решение иррациональных неравенств, содержащих

переменную под знаком двух и более радикалов четной степени», подбирает и

решает неравенства по теме. Цель этой самостоятельной работы: научиться самим

и научить затем ребят из второй группы решать такие неравенства.

2 группа повторяет изученное.

Занятие №4.

Тема: Решение иррациональных неравенств, содержащих переменную под знаком

двух и более радикалов четной степени.

Цель: отработка навыков решения иррациональных неравенств, содержащих

переменную под знаком двух и более радикалов четной степени.

I. Учащиеся из 1 группы у доски рассказывают новый материал, объясняют

неравенства, которые они решили дома, с помощью учителя разбираются

непонятные места.

II. Делаем вывод: при возведении таких неравенств в четную

степень эквивалентность не нарушается только тогда, когда обе части

неравенства неотрицательны. Некоторые неравенства следует сначала привести к

такому виду, когда ясно видно, что обе части его неотрицательны.

Решим пример (кто-то из ребят 2 группы решает у доски).

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Ответ: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

III. Решить неравенства

1)Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Ответ: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

2)

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

На ОДЗ Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Значит неравенство истинно.

Ответ: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

3)

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Ответ: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

4) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Ответ: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

5)

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Ответ: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

6)

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Ответ: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

7) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Ответ: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

IV. Д/з

1 группа пишет доклады по теме: «Решение иррациональных неравенств,

содержащих переменную под знаком двух и более радикалов нечетной степени».

Особое внимание обратить на решение неравенств вида:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства и неравенств, содержащих радикалы третьей и второй степени.

2 группа: повторение, решить неравенства а)Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства ;

б)Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Занятие №5

Тема: решение иррациональных неравенств, содержащих переменную под знаком

двух и более радикалов нечетной степени.

Цель: познакомить учащихся с неравенствами, содержащими переменную под

знаком двух и более радикалов нечетной степени и показать способы их решения.

I. Проверка Д/з 2 группы (устно)

II. Учащиеся 1 группы читают доклады, объясняют у доски решенные неравенства.

Все остальные ребята с учителем разбирают решения.

III. Решить неравенства (решения проверить друг у друга в парах).

1)

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Ответ: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

2) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

+ - +

-1 3

Ответ: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

3) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

найдем решение соответствующего уравнения:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

возводим в куб

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

делаем замену

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Проверка:

1. Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

-2=1 – ложно, корень х = 0 – посторонний

2.

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Ответ: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

4) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

решим соответствующее уравнение:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

возводим в куб

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

делаем подстановку

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Проверка:

1. Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

2.

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

1 3

Ответ: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

5) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

возводим в куб

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

При

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Значит последнее неравенство на ОДЗ всегда истинно.

Ответ: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

6)

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Ответ: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

IV. Д/з

1 группа на примерах рассматривает решение иррациональных неравенств с

параметрами.

2 группа учит рассмотренный в классе материал, решает неравенства

а)Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

б)Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Занятие №6

Тема: Решение иррациональных неравенств с параметрами.

Цель: научить учащихся решать иррациональные неравенства с параметрами.

I. Вопросы классу

1) Что называют параметрами?

2) Когда неравенство, содержащее параметры считается решенным?

II. Учащиеся из 1 группы рассказывают о решении неравенств, которые они

решали дома. Учитель помогает сделать выводы.

III. Решить неравенства

1)

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

все значения Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства принадлежат ОДЗ, так как Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства значит

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Ответ: 1)Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

2) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

2) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

ОДЗ неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

а) при а < 0

на ОДЗ Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства всегда и неравенство истинно

б) при Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

последнее неравенство имеет смысл при Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , значит при Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства нет решений

при Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

возводим в квадрат обе части неравенства

1 – 2а2 + a4 > 4a2(x – 1)

a4 + 2a2 + 1 > 4a2x

(a2 + 1)2 > 4a2x

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Ответ: 1) при Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

2) при Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства нет решений

3) при Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

3)

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

ОДЗ неравенства Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

а) при а = 0 нет решения

б) при а > 0 ОДЗ Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

х = 0 и х = а не удовлетворяют неравенству х(ха) < 0 на ОДЗ, а

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства всегда и неравенство истинно всегда

в) при а < 0 ОДЗ х Î [a;0] неравенство истинно

Ответ: а) если а > 0 0 < x < a

б) если а = 0 нет решения

в) если а < 0 Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

4) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

при а £ 0 неравенство не имеет смысла, так как получаем Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

при а > 0

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Сравним а2 и Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства :

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Ответ: если a > 2, то Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

если a ³ 2, Æ

5) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

ОДЗ неравенства:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

а) при а = 0 ОДЗ х £ 0

при х = 0 решения нет

при х < 0 Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства - истинно

б) при а < 0

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

2а Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства а

ОДЗ х £ 2а

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

последнее неравенство истинно на ОДЗ, кроме х = 2а

в) при а > 0

ОДЗ х £ а

(ах)(2ах) > 0

истинно на ОДЗ, кроме х = а

Ответ: а) при а = 0 х < 0

б) при a < 0 x < 2a

в) при а > 0 x < a

IV. Д/з

1 группа подбирает и решает неравенства по теме «Решение иррациональных

неравенств» способом введения новой переменной».

2 группа решает неравенства

а) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

б) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Занятие №7

Тема: Решение иррациональных неравенств, способом введения новой переменной.

Цель: познакомить учащихся с методом решения иррациональных неравенств –

введением новой переменной.

I. Разбор неравенств, приготовленных учащимися 1 группы.

II. Решить неравенства

1)

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

тогда х2 + 5х + 4 = у2 – 24

у2 – 5у – 24 < 0

у2 – 5у – 24 = 0

D = 25 + 96 = 121

у1 = -3 у2 = 8

(у – 8)(у + 3) < 0

-3 < y < 8

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства - истинно для любого

х из ОДЗ: х2 + 5х + 28 ³ 0 – истинно всегда (

D < 0, a > 0)

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Ответ: х Î]–9; 4[

2)

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства - истинно для любого х из ОДЗ х2 – 3х + 5 ³ 0 – истинно всегда

D <0, a = 1 > 0

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Ответ: х Î [-1; 4]

3) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

ОДЗ: 5 – х ³ 0 или х £ 5

пусть Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , тогда у > x – 3, у ³ 0

выразим х через у: у2 = 5 – х Þ х = 5 – у2

получаем систему:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Значения х < 4 принадлежат ОДЗ

Ответ: х < 4

4) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

ОДЗ: 2х + 10 ³ 0, х ³ -5 3x – 5 ³ 0, x ³ Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

пусть Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , тогда у < 3x – 5, y ³ 0

выразим х через у : у2 = 2х + 10 Þ х = ½у2 – 5

получаем систему:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

x > 3

Значения х > 3 принадлежат ОДЗ

Ответ: х > 3

5)Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Найдем ОДЗ неравенства:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

х ³ 2

при х ³ 2 второе и третье неравенства системы истинны

ОДЗ: х ³ 2

пусть Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

|t + 1| - |t – 1| > 1

a) t £ -1

-t – 1 + t – 1 > 1

-2 > 1 – ложно Æ

б) –1 < t £ 1

t + 1 + t –1 >1 Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

учитывая, что –1 < t £ 1, получаем Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

в) t > 1

t + 1 – t + 1 > 1 2 > 1 – истинно

решением неравенства на всех трех промежутках будет Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

x > 2,25 – принадлежит ОДЗ

Ответ: x > 2,25

6) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

ОДЗ неравенства:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

пусть Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства , тогда

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

|t +-3| + |t – 2| > 1

a) t £ 2

- t + 3 – t + 2 > 1 t <2

учитывая, что t £ 2 получаем t <2

б) 2 < t £ 3

- t + 3 + t – 2 > 1 1 > 1 – ложно Æ

в) t > 3

t – 3 + t – 2 > 1 t >3

получаем:

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

учитывая ОДЗ получаем: 2 £ x < 6, x > 11

Ответ: 2 £ x < 6, x > 11

III. Д/з

1 группа разбирает способы решения иррациональных неравенств домножением

обеих частей на некоторое число или выражение, разложением подкоренного

выражения на множители, выделением полного квадрата в подкоренных выражениях.

2 группа решает неравенства:

а) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

б) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Занятие № 8

Тема: Решение иррациональных неравенств, способами домножения обеих

частей на некоторое число, либо выражение, выделения полного квадрата в

подкоренных выражениях, либо разложения подкоренного выражения на множители.

Цель: дать учащимся представление о способах решения иррациональных неравенств.

I. Разбор Д/з 2 группы (устно)

II. Разбор задач, приготовленных 1 группой.

III. решить неравенства

1) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

ОДЗ: х ³ 1

домножим на Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

последнее неравенство всегда истинно на ОДЗ

Ответ: х ³ 1

2) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

ОДЗ: х < 2

домножим на Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Ответ: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

3)

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Ответ: хÎ[0;3]

4) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

ОДЗ: х £ 1, х £ 5, х = 2

Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

учитывая ОДЗ получаем

Ответ: Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Итоговая контрольная работа

Вариант I.

Решить неравенства

1) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

2) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

3) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

4) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

5) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Вариант II.

Решить неравенства

1) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

2) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

3) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

4) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

5) Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства

Филиппова Ольга Владимировна.

Дипломная работа «Организация познавательной деятельности учащихся на

факультативных занятиях по теме «Иррациональные неравенства»

Руководитель: Кузьмичев Анатолий Иванович.

З А Щ И Т А (устно)

Дипломная работа состоит из введения, трех глав, заключения, списка

литературы и приложения с разработкой факультатива по теме.

В дипломной работе мне хотелось собрать и проанализировать знания, полученные

за пять лет обучения, и применить их к конкретной задаче. А именно, я

попыталась на примере изучения очень трудной и, прямо сказать, непопулярной

среди школьников темы «Иррациональные неравенства» подтвердить положение о

том, что интерес, а с ним и знания, умения, навыки приходят вместе с упорным

трудом, причем, этот труд должен носить в большой мере самостоятельный

характер и в части подготовки к занятиям, и даже части проведения и поиска

нужных форм их организации.

Важным подспорьем в развитии познавательного интереса учащихся являются, как

оказалось, исторические сведения по теме. Их поиск значительно активизировал

работу с литературой, в которой помимо всего учащиеся искали еще и сведения

по методике проведения занятий, изучения темы, задач, предлагавшихся на

вступительных экзаменах в различные ВУЗы.

При проведении факультативных занятий ученики были разбиты на 2 группы:

экспериментальную и контрольную, примерно равные по силам. У всех учащихся

была одна цель – подготовиться к вступительным экзаменам в ВУЗ. Это

определило их первоначальный интерес. Разбиение на 2 группы проводилось по

желанию самих ребят. Они посещали одни и те же занятия, изучали на уроках

один и тот же материал. Но ребята 1-ой экспериментальной группы имели гораздо

больше возможностей и причин для самостоятельной работы по теме: они в

качестве домашнего задания должны были самостоятельно изучить новую тему,

начиная с поиска материала (под руководством учителя), далее написать

доклады, найти и прорешать задачи, а затем рассказать все это остальным

участникам факультатива.

Учитель предлагал темы, литературу, определял докладчиков, акцентировал в

нужных местах внимание и на уроках давал задачи по теме, которые, по его

мнению, нужно было прорешать, а докладчики таковых не предложили.

Заключительная работа по теме показала, что учащиеся из 1-ой группы получили

результаты, пусть и ненамного, но лучше учащихся контрольной группы.

Но, кроме того, они получили бесценный опыт самостоятельной работы, который,

как мне кажется, еще даст свои положительные результаты в будущем.

По материалам проведенного факультатива и был написан диплом.

В первой главе разбираются основные формы организации познавательной

деятельности, проводится их сравнительный анализ и выясняются оптимальные

сочетания и взаимодействия этих форм (в зависимости от специфики материала и

от того, как он усвоен учащимися, выбирались сочетания фронтальной, групповой

и индивидуальной форм).

Во второй главе рассматриваются вопросы методики организации факультативных

занятий, необходимость и обоснованность их проведения. Далее излагаются

результаты опытно-экспериментальной работы.

Глава три – основная часть работы. В ней содержится необходимый теоретический

и практический материал для факультатива. К сожалению, сюда не вошли все

задачи, которые предлагали учащиеся, найденные ими к занятиям, из-за их

однотипности с опубликованными.

Учащимися, с помощью учителя, были выделены 9 частных случаев и способов

решения иррациональных неравенств и к каждому из них учащиеся придумывали

неравенства для последующего решения их всем классом.

Учителем была поставлена задача выяснить, какие трудности характерны для

каждого из способов решения.

Большое внимание уделялось оформлению решения задачи, в частности, записи

ответа, за что в ВУЗах на приемных экзаменах часто снижают бал.

Эта часть диплома может служить основой для проведения соответствующего

факультатива для любого учителя. Данная глава заканчивается подборкой задач

по теме и доказательством классических неравенств.

В приложении приводится разработка факультатива из 8 занятий по теме

«Иррациональные неравенства» и итоговая контрольная работа.

рефераты Рекомендуем рефератырефераты

     
Рефераты @2011