Билеты: Билеты по геометрии за 11 класс
Билет №16
1. Конус (формулировки и примеры)
2. Признак параллельности прямой и плоскости
1.рассмотрим окружность L с центром О и прямую ОР , перпендикулярную к
плоскости этой окружности. Каждую точку окружности соединим с отрезом в т. Р
Поверхность, образованная этими отрезками называется конической
поверхностью
а сами отрезки – образующими конической поверхности. Тело,
ограниченное конической поверхностью и круг-ом с границей L, называется
конусом .Коническая по-верх называется боковой поверхностью
конуса, а круг - снованием конуса . Т.Р называется вершиной
конуса , а образующие конической поверхности – образующими конуса. Все
образующие равны друг другу . ОР , прохо-дящая через центр основания и вершину
, называется Осью конуса . Ось конуса ⊥ к плоскости
основания. От-резок ОР называется высотой конуса.
Конус можно получить и вращением прямоуголь-ным треугольником вокруг одного из
его катетов. При этом боковая поверхность образуется с помо-щью гипотенузы.
Рассмотрим сечения конуса. Если секущая ось проходит через ось , то сечение
пред-ставляет собой треугольник , и называется осевым сечением. Если
секущая плоскость ⊥ к оси ОР конуса, о сечене пред-ставляет собой круг
с центром в т.О1 , расположенным на оси конуса. R1
этого круга равен РО1/РО r , где r- радиус основания
конуса , что легко усмотреть из подобия △РОМ∾△РО1М
1
Билет №7
1. Угол между скрещивающимися прямыми
2. Площадь боковой поверхности цилиндра.
1. Пусть АВ и СD – скрещивающиеся прямые . Возьмем произвольную
т. М1 пространства и проведем через нее прямые А1В
1 и С1D1 , соответственно параллельн АВ и СD
Если ∠ между прямыми А1В1 и С1D1
=φ, то будем говорить , что ∠ между скрещивающимися прямыми АВ и
СD=φ. Докажем теперь, что ∠ между прямыми не зависит от выбора т. М
1 . Действительно , возьмем любую т. М2 и проведем прямые А
2В2и С2D2 соответственно парал. АВ и СD
Т.к А1В1∥ А2D2 , С1
D1∥ C2D2 , то стороны углов с вершинами
в т.М1и М2 попарно сонаправлены ( ∠А1М
1С1 и ∠А2М2С2 , ∠А
1М1D1 и∠А2М2D2
) потому эти ∠ равны , ⇒ что ∠ между А2В2
и С2D2 так же =φ. В качестве т М можно взять любую
точку на одной из скрещивающихся прямых . Например на СD отметить т М и через
нее провести А'B' параллельные АВ .Угол между прямыми A'B'и CD= φ
2. Терема: S боковой поверхности цилиндра равна произведению
длинны окружности основания на высоту
Разрежем боковую поверхность по образующей АВ и развернем т.о , что все
образующие оказались в одной плоскости α . В результате в пл α
получится прямоугольник АВВ'А' . Стороны АВ и А'В' –два края разреза боковой
поверхности цилиндра по образующей АВ . Это прямоугольник называется
разверткой боковой поверхности цилиндра . основание АА' прямоугольника
является разверткой окружности основания цилиндра , поэтому АА'=2πr ,
AB-h, где г- радиус цилиндра , h- его высота . за S бок цилиндра
принято считать S её развертки . Т.к S прямоугольника АВВ'А'= АА'•ВА =
2πr•h то, для вычисления S бок цилиндра радиуса к и высоты h формула
S бок=2πrh
Билет № 15
1. Цилиндр (формулировки и примеры)
2. Признак параллельных прямых.
1. Рассмотрим две параллельные плоскости α и β и окружность L
с центром О радиуса r , расположенную в пл α. Отрезки прямых заключенных
между плоскостями образуют цилиндрическую поверхность. Сами отрезки
называются образующими цилиндрической поверхности По построению концов
образующих расположенных в пл β заполним окружность
L1. Тело ограниченное цилиндрической поверхностью и двумя кругами
с границами L и L1 , называется цилиндром. Цилиндрическая
поверхность называется боковой поверхностью цилиндра, а круги -
основаниями цилиндра . Образующие цилиндрической поверхности называются
образующими цилиндра , прямая ОО1- осью цилиндра.
Цилиндр может быть получен вращением прямоугольника вокруг одной из его
сторон. Сечение цилиндра , проходящее через ось , представляет собой
прямоугольник , две стороны которого образующие , а 2 другие –диаметры
оснований цилиндра , такое сечение называется осевым. Если секущая плоскость
⊥ к оси цилиндра , то сечение является кругом. Цилиндры так же
могут быть и наклонными или иметь в своем основании параболу .
Параллельность прямых а и b обозначается так: а||b. Докажем теорему о
параллельных прямых.
Т е о р е м а. Через любдю точку пространства, не лежащую на данной
прямой, проходит прямая, параллелькая данной, и притом только одна.
Д-во. Рассмотрим прямую a и т М, не
лежащую на этой прямой. Через прямую a и т М проходит
пл, и притом только одна . Обозначим эту плоскость буквой α. Прямая,
проходящая через точку М параллельно прямой а, должна лежать в
одной плоскости с т М и прямой а, т. е. должна лежать в плоскости
α. Ho в плоскости α, как известно из курса планиметрии, через т М
проходит прямая, параллельная прямой а, и притом только одна. Эта прямая
обозначена буквой b. Итак, b — единственная прямая, проходящая
через т М параллельно прямой а. Теорема доказана.
Билет № 17
1. Сфера, шар( формулировки, примеры)
2. Признак параллельности плоскостей.
Определение. Сферой называется поверхность, состоящая из всех точен.
пространства, расположенных на данном расстоянии or данной точки
Данная точка называется центром сферы (т О), а данное расстояние
— радиусом сферы. Радиус сферы часто обозначают буквой R
Люб-ой отрезок, соединяющий центр и какую-нибудь точку сферы, также называется
радиусом сферы.Отрезок, соединяющий две точки сферы и проходящий через ее
центр, называется диаметром сферы. Очеви-дно, диаметр сферы равен 2R
Отметим, что сфера может быть полу-чена вращением полуокружности вокруг ее
диаметра Тело, ограни-ченное сферой, называется шаром. Центр, радиус и
диаметр сферы называются также центром, радиусом и диаметром
шара. Очевидно, шар радиуса R с центром О содержит все точки
пространства, кот. Расположены от точки О на расстоянии, не превышающем
H (вклю-чая и точку О), и не содержит других точек.
2.Теорема. Если две пересекающиеся прямые одной плоскости
соответственно параллельны двум прямым, другой плоскости, то эти плоскости
праллельны.
Д-во. Рассмотрим две плоскости α и β. В плоскости α лежат
пересека-ющиеся в точке М прямые a и b, а в плоскости β — прямые a
1 и b\, причем a||a1 и b||b1.
Докажвм, что a||b. Прежде всего отметим, что по признаку параллельности прямой и
плоскости a||β и b||β. Допустим, что плоскости α и β не
параллельны. Тогда они пересекаются по некоторой прямой с. Мы получили,
что плоскость a проходит через прямую а, па-раллельную плоскости β,
и пересекает плоскость по прямой с. Отсюда следует, что a||с.
Но плоскость a проходит также через прямую b, параллельную плоскости
β. Поэтому b||c. Т.о, через т М проходят две прямые a и b
, параллельные прямой с. Но это невозможно, т.к по теореме о
параллельных прямых через точку М проходит только одна прямая,
параллельная прямой с. Значит, наше допущение неверно и α|| β.
Теорема доказана.
Билет № 14
1. Пирамида(формулировка , примеры)
2. Существование прямой, параллельной данной прямой и проходящей
через данную точку.
1. Рассмотрим многоугольник А1А2.Аn и точку Р не
лежащую в плоскости этого многоугольника . Соединив т. Р отрезками с вершинами
многоугольника, получим n треугольников РА1А1, РА2
А3.,РаnА1.
Многоугольник, составленный из n –угольника А1А2.Аn и n
тре-угольников , называется пирамидой. Многоугольник А1А
2.Аn назы-вается основанием, а треугольники-
боковыми гранями пирами-ды. Т.Р называется вершиной пирамиды , а
отрезки РА1,РА2, ., РАn – её боковыми ребрами .
Пирамиду с основанием А1А2,.Аn и вершиной Р обозначают
так: РА1А2.Аn –и называют n –угольной пирамидой.
Треугольная пирамида называется тетраэдр. Перпендикуляр , прове-денный из
вершины пирамиды к плоскости основания , называют высотой пирамиды
(РН) Площадью полной поверхности пирамиды называют сумму площадей её
граней , а площадью боковой поверх-ности – сумму площадей её боковых
граней
Билет № 9
1. Угол между плоскостями (формулировка, примеры)
2. Сложение векторов. Свойства сложения.
2. Возьмем 2 произвольных вектора a и b .Отложим от какой-нибудь т А
вектор АВ равный а. Затем от т В отложим ВС=b . Вектор АС называется
суммой векторов а и b : АС=a+b.
Это правило сложения векторов называется правилом треугольника. (по
этому же правилу складываются и коллинеарные векторы , хотя при их сложении
треугольника не получается) Сумма a+b не зависит от выбора т А, от которой
при сложении откладывается вектор а. (если например заменить т А на т А
1 то вектор АС заменится равным ему вектором А1С1
Привило треугольника можно сформулировать и в другой форме: для любых точек
А,В,и С имеет место равенство АВ+ВС=АС. Для сложения 2-ух неколлинеарных
векторов можно пользоваться так же правилом параллелограмма. Для любых
векторов а, b и с справедливы равенства: a+b=b+a (перемести-тельный з-н.
);(a+b)+с=а+(b+с)(сочетательный з-н). Два нулевых вектора называются
противоположными, если их длины равны нулю и они противоположно
направлены.Вектором проти-оположным нулевому вектору , считается нулевой
вектор. Вектр АВ является проти-воположным вектру ВА
Билет № 10
1. Двугранный угол. Линейный угол двугранного угла.( формулировки ,
примеры)
2. Умножение вектора на число . Св-ва произведения вектора на число.
1. Двугранным углом называют фигуру , образованную прямой а и 2-мя
полуплоскостями с общей границей а, не принадлежащими одной плоскости.
Полуплоскости, образующие двугранный угол , называются его гранями.
У двугранного угла 2 грани, отсюда и название. Прямая а – общая граница
полуплоскостей- называется ребром двугранного угла. Для измерения
двугранного угла отметим на ребре какую-нибудь т. и в каждой грани из этой
точки проведем перпендикуляр к ребру. Образованный этими лучами угол
называется линейный угол двугранного угла. (Ð АОВ ) ОА^CD CD^ОВ, то
плоскость АОВ ^ к прямой СD. Двугранный угол имеет бесконечное множество
линейных углов и они равны друг другу. Рассмотрим 2 линейных ÐАОВ и ÐА
1О1В1 . Лучи ОА и О1А1 лежат в
одной грани ^к ОО1, поэтому они сонаправлены. Точно так же
сонаправлены ОВ и О1В1=> Ð А1О1В1
=ÐАОВ. Градусной мерой двугранного угла называется градусная мера его
линейного угла . Он может быть прямым , острым, тупым ( 90°,
<90°, >90°)
2. Произведение ненулвого вектора а на число k называется такой вектор
b , длинна которого равно |k|·|a| , причем вектор a и b
сонаправлены при k≥ 0 и противоположно направлены при k<0.
Произведением ненулевого вектора на любое число нулевой вектор.
Произведение вектора а на число k обозначается так : ak. Для любого числа k и
вектора а векторы а и ka коллинеарны. Из этого определения следует , что
произведение любого вектора на число 0 есть нулевой вектор. Для любых векторов
а и b и любых чмсел k, l справедливы равенства:
(kl)a= k(al) (сочетательный з-н)
k(a+b)=ka+kb(Ι-ый распределительный з-н)
(k+l)a=ka+la ( II-ой распределительный з-н)
отметим, что (-1)а является вектором противоположному вектору а, т.е. (-1)а =
-а. Действитель-но, длины векторов (-1)а и а равны: |(-1)a|
=|(-1)|×|а|=а. Кроме того , если вектолр а ненулевой , то векторы (-1) а
и а противоположно направлены. Точно так же, как в планеметрии, можно
диказать, что если векторы а и b коллинеарны и а¹0 , то существует число
k такое, что b= ka.
Билет № 11
1. призма (формулировки , примеры)
2. Скалярное произведение векторов.
1.Рассмотрим два равных многоугольника А1А2..,
Ап и В1В2....Вп,
расположенных в параллельных пл-тях а и р так, что отрезки А1В
1 ,А2В2, ..., АпВп,
соединяющие соответственные вершины мн-
ков, параллельны.Каждый из п 4-хугольников A1A2
B2B1, А2А3В3В2
, .... AnA1B1Bn
является п-ммом, так как имеет попарно параллельные про-тивоположные стороны.
Мн-к, составленный из 2 равных мн-ков А1A2...An
и В1В2...Вп, расположенных в
параллельных пл-тях, и n п-ммов наз призмой Мн-ки A1A
2....An и B1B2...Bn наз
основаниями, а п-ммы-бокоеыми гранялш призмы.От резки А1
В1, А2В2 ..., АпВп наз
бо-коеыми ребрами призмы. Эти ребра как противрпрложные стороны п-ммов
последовательно приложенных друг к другу, равны в парал-лельны.Призму с
основаниями A1A2....An и B1B2
...Bn обозначают-A1A2 ....Аn
В1В2...Вn и называют п-угольной
призмой.4-ехугольная призма- параллелепипед. ^, проведенный из
какой-нибудь точки одного ос-нования к плоскости другого основания, называется
высотой приз-мы. Если боковые ребра призмы ^ к основаниям, то призма наз
пря-мой, в противном случае –наклонной. Высота прямой призмы равна ее
боковому ребру.Прямая при-зма называется пра-вильной, если ее основания
— правильные мн-ки. У такой призмы все боковые грани -равные прямоугольники S
полной поверхности. призмы называется сумма площадей всех ее граней, а S
боковой поверхности приз-мы— сумма площа-дей ее боковых граней. Пло-щадь S
полн полной повер-хности выра-жается через площадь S6os
боко-вой поверхности и пло-щадь Sосн ос-нования призмы форму S
полн = S6oк+ 2Sосн.
2. Скакалярным произведением 2-ух векторов называется произведение их
длин на косинус угла между ними.Скал-ое произведение векторов а и b
обозначают так :аb . Т. о. ab=|a|×|b| cos (ab). Скал-ое произведение
вектора равно 0 тогда, когда эти векторы ^; скал-ый квадрат вектора(т.е
скал-ое призведение вектора на себя) = квадрату его длинны.. Скал-ое
произведение 2-ух векто-ров можно вычислить, зная координаты этих
векторов:скал-ое произведение векторов а{x1;y1;z1
} и b{x2;y2;z2}выражается формулой: аb= x1
x2+y1y2+z1z2. Косинус
Ð a между ненулевыми вектора-ми а{x1;y1;z1
} и b{x2;y2;z2} вычисляется формулой.
соsa= | x1x2+y1y2+z1z2. | В самом деле, так как а b =|а|×|b|, то | cosa= | ab | √x12+y1²+z12 ⋅√ x22+y2²+z22 | |a|×|b| |
Подставив сюда выражения для ab, |а|и|b| через координаты векторов а и b
получим эту формулу. Для любых векторов а,b и c и любого числа k справедливы
равенства:
10.а2 ³) , причем а2>0 при а¹0
20.ab=ba(переместительный з-н)
30.(a+b)c=ac+bc(распределительный з-н)
40.k(ab)=(ka)b (сочетательный з-н)
Утверждения 1⁰-4⁰относятся и к планиметрии Нетрудно док-ть , что
распределительный з-н имеет место для любого числа слагаемых(
(a+b+c)d=ad+bd+cd.)
Билет № 12
1. Прямая и правильная призма(формулировки примеры)
2. Существование плоскости , проходящей через данную прямую и данную
точку.
Билет №20
1. Фрмула обьема шара( формула примеры)
2. Теорема о трех перпендикулярах
1. Теорема: Объем шара радиуса R равен 4/3 pR3
Д-во: Рассмотрим шар радиуса R с центром в т.О и выберем ост Ох
произвольным образом. Сечение шара пл. ^к оси Ох и проходящей через т М этой
оси является кругом с центром в т М. Обозничим радиус этого круга r , а его
площадь S(x), где х- абсц-исса т М. Выразим S(х)через х и R.Из
прямоуголь-ника ОМС находим: r=ÖOC2 –OM2 =ÖR
2-x2.Так как S(x)=pR2 ,то S(x)= p(R2- x
2). Заметим , что эта фор-мула верна для любого положения т.М на диаметре
АВ, т.е. для всех х, удовлетворяющих условию -R£ x £R. Примеряя
основную формулу для вычисления объемов тел при а= -R, b=R, получим
V | R R R R | px3 | R | 4 | | | =∫p(R2-x2)dx= pR2∫ dx-p∫x2dx=pR2x½- | ½= | pR3 | | 3 | 3 | | -R -R -R -R | -R | | |
Билет № 6
1. Расстояние между скрещивающимися прямыми (формулировки, примеры)
2. Объем конуса.
2 Теорема. Объем конуса равен одной трети произведения площади основания на
высоту.
Д-во Рассмотрим конус с объемом V, радиусом основания R,
высо-той h и вершиной т О . Введем ось Ох (ОМ). Произвольное сечение конуса
пл. , ^ к оси Ох , является кругом с центром в т М1 пересе-чения
этой пл. с осью Ох. Обозначим радиус через R1 ,а S сечения через
S(х) , где х – абсцисса т М1 . Из подобия прямоугольных ∆ ОМ
1А1 и ОМА=> что
ОМ1 | = | R1 | , или | x | = | R1 | откуда | R= | xR | так как | S(x)= pR12 | ,то | S(x)= | pR2 | ОМ | R | h | R | h | h2 |
Применяя основную формулу для вычисления объемов тел при а=0, b=0, получим
| h | | | | h | | | | h | V= | ∫ | πR2 | x2dx= | πR2 | ∫ | x2dx= | πR2 | × | x3 | ½= | 1 | πR2 h | h2 | h2 | h2 | 3 | 3 | | 0 | | | | 0 | | | | 0 |
Площадь S основания конуса равна pR2, поэтому V=1/3
Sh. Следствие. Объемом V усеченного конуса , высота кот равна h, а площадь
оснований S и S1вычисляется по формуле V=1/3
h(S·S1+√ S·S1).
Билет № 3
1. Взаимное расположение прямой и плоскости в пространстве
2. Объем призмы.
1.Теорема. Если прямая, ке лежащая в данной шюскости,
параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна
данной шюскости.
Д-во. Рассмотрим пл α и две параллельные прямые a и b,
распо-ложенные так, что прямая b лежит в пл α , а прямая a не лежит
в этой. Докажем, что a||α. Допустим, что это не так. Тогда прямая
a пересекает пл α, а значит, по лемме о пересечении плоскости
парал-лельными прямыми прямая b также пересекает пл α. Ho это
невоз-можно, так как прямая b лежит в пл α. Итак, прямая а не
пересекает пл α, поэтому она параллельна этой плоскости.чтд.
Докажем еще 2 утверждения,
1˚ . Если плоскость проходит через данную прямую, параллельную другой
пл, и пересекает эту пл, то линия пересечения плоскостей параллельна данной
прямой.Пусть через данную прямую а, парал-лельную пл α
проходит пл β, пересекающая пл α пo прямой b . До-кажем, что b
||а.Действительно, эти прямые лежат в одной пл (в пл β) и не
пересекаются: ведь в противном случае прямая а пересекала бы пл α,
что невозможно, поскольку по условию a||α.
2°. Если одна из двух параллельных прямых параллельна данной пл, то другая
прямая либо также параллельна данной пл, либо лежит в этой пл..В самом
деле, пусть a и b — параллель-ные прямые, причем прямая a параллельна
пл α. Тогда прямая a не пересекает пл α, и, =>, по лемме
о пересечении плоскости параллельными прямыми прямая b также не пересекает пл
α. Поэтому прямая b либо параллельна пл α, либо лежит в этой пл.
2.Теорема: Объем прямой призмы равен произведению площади основания на высоту.
Д-во: Рассмотрим правильную 3-угольную призму АВСА1В
1С1с объемом V и высотой h.
Проведем такую высоту ∆АВС (ВD) кот. разделит этот ∆на 2 ∆.
Поскольку ВВ1D разделяют данную призму на 2 призмы , основания кот
является прямоугольный ∆ABD и ВСD. Плэтому объем V1 и V2
соответственно равны SABD ·h и SВСD
·h. По св-ву 20 объемов V=V1+V2 т.е
V= SABD ·h+ SВСD ·h= (S
ABD+ SВСD) h. Т.о. V=SАВС·h
Д-во Возьмем произвольную прямую призму с высотой h и
площадью основания S. Такую
призму можно разбить на прямые треугольные призмы с высотой h. Выразим
объем каждой треугольной призмы по формуле (1) и сложим эти объемы. Вынося за
скобки общий множитель h, получим в скобках сумму площадей оснований
треугольных призм, т. е. площадь S основания исходной призмы. Таким образом,
объем исходной призмы равен произведению Sh. Теорема доказана.
Билет №5
1. Перпендикуляр к наклонной плоскости(формулировки, примеры)
2. Объем цилиндра.
1.Рассмотрим пл α и т А, не лежащую в этой плоскости.
Проведем через т А прямую,^ к пл α, и обозначим букв H т
пересечения этой прямой с пл α .Отрезок АН называется, ^
проведенным из
т А к пл α, a т Н — основанием ^. Отметим в пл α
какую-нибудь т М,отличную от Н, и проведем отр AM.Он
называется наклонной, про-вед из т А к пл α , а т М —
основанием наклонной. Отрезок НМ наз-ывается проекцией наклонной на
пл α. Сравним ^ АН и наклон-ную AM: в прямоугольном
∆АМН сторона АН — катет, а сторона AM -
гипотенуза, поэтому АН<АМ. Итак, ^, проведенный аз данной т к пл, меньше
любой наклонной, проведенной из той же т к этой пл.
=> из всех расстояний от т А до различных т пл α наименьшим
является расстояние до т H. Это расстояние, т. е: длина ^, проведенного из т
А к пл α , называется расстоянием от т A до пл α
Замечаиия. 1. Если две плоскости параллельны, то все точки одной плоскости
равноудалены от другой плоскости.
2. Теорема. Объем цилиндра равен произведению площади основания на высоту.
Д-во. Впишем в данный цилиндр Р радиуса r и высоты h правильную
n-угольную призму Fn а в
эту призму впишем цилиндр Рп . Обозначим через V и Vn
объемы цилиндров Р и Рп, через rп — радиус цилиндра Р
п. Так как объем призмы Fn равен Snh, где Sn
- площадь основания призмы, а цилиндр Р содержит призму Fn , кот в
свою очередь , содержит цилиндр Рп , то Vn<Sn
h<V. Будем неограниченно увеличивать число n. При этом радиус rп
цилиндра Рп стремиться к радиусу r цилиндра Р(rп
=rcos180/n®r при r→∞). Поэтому V цилиндра Рп стремиться
к объему цилиндра Р: limVn=V. Из равенства (Vn<S
nh<V) =>, что
n→∞
limSnh=V. Но limSn=πr2 Т.о V=πr2h. т.к πr2=S , то получим V=Sh.
n→∞ n→∞
Билет № 13
1. Параллелепипед. Прямоугольный параллелепипед(формулировка примеры)
2. Теорема о боковой поверхности призмы.
1. Прямоугольный параллелепипед. Параллелепипед называется
прямоугольник, если его боковые ребра ^к основанию, а основания представляют
собой прямоугольники: коробки,
ящики, комнаты к т. д. прямоугольный параллелепипед ABCD A1B
1C1D1.Его основаниями служат прямоугольники
ABCD и A1B1C1D1 a
боковые ребра АА1, ВВ1, СС1 и DD
1 ^ к основаниям. Отсюда=>, что АА1^АВ,
т. е. боковая граyь АА1В1В — прямоуголь-ник. To же
самое можно сказать и об остальных боковых гранях. Та-ким образом, мы
обосновали следующее свойство прямоугольного параллелепипеда:
1°. В прямоугольном параллелепипеде все шесть граней прямоугольники.
Полупл, в кот расположены смежные грани парал-
да, образуют двугранные углы, кот называются двугранными углами параллелепипеда.
2°. Все двугранные углы прямоугольного параллелепипеда — прямые.
Длины трех ребер, имеющих общую вершину, назовем измерениями
прямоугольного парал-да. Например, у парал-да, можно взять длины ребер АВ,
AD и АА1.Длины смежных сторон можно назвать измерениями
прямоугольника и поэтому можно сказать, что квадрат диагонали,
прямоугольника равен сумме квадратов двух его измерений. |