Ãëàâíàÿ » Êàòàëîã    
ðåôåðàòû Ðàçäåëû ðåôåðàòû
ðåôåðàòû
ðåôåðàòûÃëàâíàÿ

ðåôåðàòûÁèîëîãèÿ

ðåôåðàòûÁóõãàëòåðñêèé ó÷åò è àóäèò

ðåôåðàòûÂîåííàÿ êàôåäðà

ðåôåðàòûÃåîãðàôèÿ

ðåôåðàòûÃåîëîãèÿ

ðåôåðàòûÃðàôîëîãèÿ

ðåôåðàòûÄåíüãè è êðåäèò

ðåôåðàòûÅñòåñòâîçíàíèå

ðåôåðàòûÇîîëîãèÿ

ðåôåðàòûÈíâåñòèöèè

ðåôåðàòûÈíîñòðàííûå ÿçûêè

ðåôåðàòûÈñêóññòâî

ðåôåðàòûÈñòîðèÿ

ðåôåðàòûÊàðòîãðàôèÿ

ðåôåðàòûÊîìïüþòåðíûå ñåòè

ðåôåðàòûÊîìïüþòåðû ÝÂÌ

ðåôåðàòûÊîñìåòîëîãèÿ

ðåôåðàòûÊóëüòóðîëîãèÿ

ðåôåðàòûËèòåðàòóðà

ðåôåðàòûÌàðêåòèíã

ðåôåðàòûÌàòåìàòèêà

ðåôåðàòûÌàøèíîñòðîåíèå

ðåôåðàòûÌåäèöèíà

ðåôåðàòûÌåíåäæìåíò

ðåôåðàòûÌóçûêà

ðåôåðàòûÍàóêà è òåõíèêà

ðåôåðàòûÏåäàãîãèêà

ðåôåðàòûÏðàâî

ðåôåðàòûÏðîìûøëåííîñòü ïðîèçâîäñòâî

ðåôåðàòûÐàäèîýëåêòðîíèêà

ðåôåðàòûÐåêëàìà

ðåôåðàòûÐåôåðàòû ïî ãåîëîãèè

ðåôåðàòûÌåäèöèíñêèå íàóêàì

ðåôåðàòûÓïðàâëåíèå

ðåôåðàòûÔèçèêà

ðåôåðàòûÔèëîñîôèÿ

ðåôåðàòûÔèíàíñû

ðåôåðàòûÔîòîãðàôèÿ

ðåôåðàòûÕèìèÿ

ðåôåðàòûÝêîíîìèêà

ðåôåðàòû
ðåôåðàòû Èíôîðìàöèÿ ðåôåðàòû
ðåôåðàòû
ðåôåðàòû

Ïðèêëàäíàÿ òåîðèÿ öèôðîâûõ àâòîìàòîâ


1. ÏÎÁÓÄÎÂÀ ÎÁ'ªÄÍÀÍί
ÃÑÀ
1.1.   Ïîáóäîâà
ÃÑÀ
Ïî
îïèñàõ ãðàô-ñõåì, ïðèâåäåíèõ â çàâäàíí³
äî êóðñîâî¿ ðîáîòè,     ïîáóäóºìî ÃÑÀ Ã1-Ã5
(ìàë. 1.1-1.5), äîäàâøè ïî÷àòêîâ³ ³ ê³íöåâ³ âåðøèíè ³ çàì³íèâøè êîæíèé îïåðàòîð
Yi  îïåðàòîðíîþ âåðøèíîþ, à êîæíó óìîâó Xi - óìîâíîþ. 
1.2.   Ìåòîäèêà
îá'ºäíàííÿ ÃÑÀ
Ó
ÃÑÀ Ã1-Ã5  º 
îäíàêîâ³  ä³ëÿíêè, òîìó ïîáóäîâà àâòîìàò³â çà ÃÑÀ Ã1-Ã5 ïðèâåäå äî
íåâèïðàâäàíèõ  àïàðàòóðíèõ âèòðàò.  Äëÿ äîñÿãíåííÿ
îïòèìàëüíîãî ðåçóëüòàòó ñêîðèñòàºìîñÿ ìåòîäèêîþ Ñ.².Áàðàíîâà, ÿêà äîçâîëÿº
ì³í³ì³çóâàòè ÷èñëî îïåðàòîðíèõ
óìîâíèõ âåðøèí. Çàçäàëåã³äü ïîì³òèìî
îïåðàòîðí³ âåðøèíè â ïî÷àòêîâèõ ÃÑÀ,  êåðóþ÷èñü ñë³äóþ÷èìè
ïðàâèëàìè:
1)
îäíàêîâ³ âåðøèíè Yi â ð³çíèõ ÃÑÀ  â³äì³÷àºìî îäíàêîâèìè  ì³òêàìè Aj;
         2) îäíàêîâ³
âåðøèíè Yi â ìåæàõ îäí³º¿
ÃÑÀ  â³äì³÷àºìî ð³çíèìè ì³òêàìè
Aj;
         3) ó âñ³õ ÃÑÀ ïî÷àòêîâó âåðøèíó  ïîì³òèìî ÿê
À0,  à ê³íöåâó - ÿê Ak.
         Íà   
íàñòóïíîìó    åòàï³  
êîæí³é   ÃÑÀ   ïîñòàâèìî  
ó  â³äïîâ³äí³ñòü  íàá³ð çì³ííèõ   PnÎ {P1...Pq},   äå q=]log2N[, 
N -ê³ëüê³ñòü ÃÑÀ.  Îçíà÷óâàëüíîþ äëÿ ÃÑÀ Ãn ìè áóäåìî íàçèâàòè êîí`þíêöèþ  Pn=p1eÙ...Ùpqn  åÎ{0,1},  ïðè÷îìó p0=ùð,  p1=ð. Îá'ºäíàíà ÃÑÀ ïîâèííà çàäîâîëüíÿòè ñë³äóþ÷èì
âèìîãàì:
1)
ÿêùî ÌÊ Ai âõîäèòü õî÷à á â îäíó ÷àñòêîâó ÃÑÀ, òî âîíà âõîäèòü ³ â    îá'ºäíàíó ÃÑÀ Ã0,
ïðè÷îìó ò³ëüêè îäèí ðàç;
2)
ïðè ï³äñòàíîâö³ íàáîðó
çíà÷åíü (å1...en), íà ÿêîìó Pq=1 ÃÑÀ  Ã0
ïåðåòâîðþºòüñÿ â ÃÑÀ,  ð³âíîñèëüíó ÷àñòêîâ³é ÃÑÀ Ãq.
Ïðè îá'ºäíàíí³ ÃÑÀ âèêîíàºìî ñë³äóþ÷³ åòàïè:
-ñôîðìóºìî
÷àñòêîâ³  ÌÑÀ  Ì1
- Ì5, ùî â³äïîâ³äí³ ÃÑÀ  Ã1 - Ã5;
-
ñôîðìóºìî îá'ºäíàíó ÌÑÀ Ì0;
-
ñôîðìóºìî ñèñòåìè äóæêîâèõ
ôîðìóë ïåðåõîäó  ÃÑÀ Ã0;
-
ñôîðìóºìî îá'ºäíàíó ÃÑÀ Ã0.
1.3.   Îá'ºäíàííÿ
÷àñòêîâèõ ÃÑÀ
  
×àñòêîâ³
ÌÑÀ Ì1-Ì5
ïîáóäóºìî ïî ÃÑÀ Ã1-Ã5
(ìàë.1.1)
â³äïîâ³äíî. Ðÿäêè ÌÑÀ â³äì³òèìî âñ³ìà ì³òêàìè Ai, ùî
âõîäÿòü äî ÃÑÀ, êð³ì ê³íöåâî¿ Ak.
                          ÏÎ×ÀÒÎÊ     A0  
                                          
                          1      
                    0        X1       1
          2
         
                    A1
                                            
3     
                                       0      
         4                                   X2                                                                                         
A2                         1                 
                                             5
                                            
 
                                                     A3
                                             6    
                                                      A4
                                           
                                             7
 
                                                      A5
    
 
                                             8
                                                       
                                                      A6
                                             9
                          
                                                      A7
                                            
                                             10
 
                                                      A8
    
                                           Ê³ÍÅÖü     Ak
                     
                      Ìàë.1.1. ×àñòêîâà
ãðàô-ñõåìà àëãîðèòìó Ã1
                            ÏÎ×ÀÒÎÊ     A0
                           
                            1
                        
                                        A1
                           
2
                         
                                        A7              
                  
                              
                             
                         0 
3        1   
                              X3
                                
             4                                 5 
                                                                                                                                          A9                                       A6
             6                                 7  
                                A10                                 A12
 
             8                                 9
             
                                    A3                               A22                                         
             
             10
             
                        A11
                             Ê³ÍÅÖÜ   Ak
                          Ìàë.1.2. ×àñòêîâà ãðàô-ñõåìà
àëãîðèòìó Ã2
                        ÏÎ×ÀÒÎÊ    A0
                         

                                   A11
             
                     
    
                    0   2          1          
                           X1
                                
        3                                        4 
               
A15                                                              A16                                                     
                                                 6
      5         1                   
         X3                                                  A12  
         0                         
     
          
                         
7                      8
                                  A6                    A13                                                      
                         ʳÍÅÖÜ     Àk
 
                                Ìàë.1.3. ×àñòêîâà ãðàô-ñõåìà àëãîðèòìó Ã3
                          
ÏÎ×ÀÒÎÊ   A0        
                       
                            1     
                      0          
    1                 
                             X1 
                                                2
                                                         A13
                                                3
                                                         A9
                       
                                               
4
                                                         A8
                                               5
                                         1    
X2      
             
                            6                    0
                                                  
                                      A17
                           
7
                                      A6
                  
                              
                            8  
                                      A2
                           
9
                              
                                      A18
                            ʳÍÅÖÜ        
Ak                 
                                              
             Ìàë.1.4.
×àñòêîâà ãðàô-ñõåìà àëãîðèòìó Ã4
                    
                          ÏÎ×ÀÒÎÊ    A0                                                                 
                          
1
                                    A1    
 
                          
2   
                                    A6
                           
                          
3
                                    A19
                           4
                        0        1
                            X1  
                                          
5   
                                      0    X2           
                                              
                                          1       
                                          6
                                                   A20
 
                                          7
                                                    A17
                                           8
                                                    A2
                                           9
                                                    A21
                                          ʳÍÅÖÜ      Ak
                                       Ìàë.1.5. ×àñòêîâà ãðàô-ñõåìà
àëãîðòèìó Ã5
Ñòîâïö³
ÌÑÀ â³äì³òèìî âñ³ìà ì³òêàìè Ai­, ùî âõîäÿòü äî ÃÑÀ, êð³ì ïî÷àòêîâî¿ A0. Íà ïåðåòèí³ ðÿäêà Ai
ñòîâïöÿ Aj çàïèøåìî
ôîðìóëó ïåðåõîäó fij â³ä îïåðàòîðà Ai äî îïåðàòîðà Aj.
Öÿ ôóíêö³ÿ äîð³âíþº 1 äëÿ
áåçóìîâíîãî ïåðåõîäó àáî êîí`þíêö³¿
ëîã³÷íèõ óìîâ, â³äïîâ³äíèõ âèõîäàì óìîâíèõ âåðøèí, ÷åðåç ÿê³ ïðîõîäèòü øëÿõ  ç âåðøèíè ç ì³òêîþ
Ai ó âåðøèíó ç ì³òêîþ
Aj.
Çà
ìåòîäèêîþ îá'ºäíàííÿ çàêîäóºìî ÌÑÀ
òàêèì ÷èíîì:
 
                                                                
Òàáëèöÿ 1.1
                                                           Êîäóâàííÿ ÌÑÀ
  ÌÑÀ P1P2P3 Ì1 0  0  0  (ùp1ùp2ùp3) Ì2 0  0  1  (ùp1ùp2p3) Ì3 0  1  0  (ùp1p2ùp3) Ì4 0  1  1  (ùp1p2p3) Ì5 1  0  0  (p1ùp2ùp3)
×àñòêîâ³ ÌÑÀ Ì1-Ì5
íàâåäåí³
â  òàáë.1.2-1.6
                                                   Òàáëèöÿ 1.2
                                                
×àñòêîâà ÌÑÀ Ì1   A1   A2   A3   A4   A5   A6   A7   A8   Ak  A0   ùx1 ùx1ùx2  x1x2  A1   1  A2     1  A3   1  A4   1  A5   1  A6   1  A7   1  A8   1
                                                                                                                  
Òàáëèöÿ 1.3
                                                
×àñòêîâà ÌÑÀ Ì2  A1  A3  A6  A7  A9  A10  A11  A12  A22  Ak  A0  1  A1   1  A3   1  A6   1  A7  x3  ùx3  A9   1  A10   1  A11   1  A12   1  A22   1
                                                                                                                   
Òàáëèöÿ 1.4
                                                
×àñòêîâà ÌÑÀ Ì3   A6   A12   A13   A14   A15   A16   Ak   A0    1   A6    1   A12    1   A13    1   A14   ùx1   x1   A15   x3   ùx3   A16    1
                                                                                                                 
  Òàáëèöÿ 1.5
                                                
×àñòêîâà ÌÑÀ Ì4   A2   A6   A8   A9   A13   A17   A18   Ak   A0   ùx1   x1   A2   1   A6   1     A8   x2   ùx2   A9   1   A13   1   A17   1   A18   1
 
          
                                                                                                        
Òàáëèöÿ 1.6
                                                 ×àñòêîâà ÌÑÀ Ì5   A1   A2   A6   A17  A19   A20   A21   Ak   A0   1   A1   1   A2   1   A6   1   A17   1   A19  x1ùx2  x1x2   ùx1   A20   1   A21   1
   Íà íàñòóïíîìó åòàï³ ïîáóäóºìî îá'ºäíàíó  ÌÑÀ
Ì0, â ÿê³é
ðÿäêè   â³äì³÷åí³ âñ³ìà 
ì³òêàìè Ài,
êð³ì Àk, à
ñòîâïö³ - âñ³ìà, êð³ì À0.
Íà
ïåðåòèí³ ðÿäêà Ài ³ ñòîâïöÿ Àj çàïèøåìî ôîðìóëó ïåðåõîäó, ÿêà ôîðìóºòüñÿ òàêèì
÷èíîì: Fij=P1fij1+...+Pnfijn     (n=1...N). Äå fijn-ôîðìóëà
ïåðåõîäó ç âåðøèíè Ài
ó âåðøèíó Àj äëÿ n-î¿
ÃÑÀ. Íàïðèêëàä, ôîðìóëà ïåðåõîäó
À0®À1  áóäå ìàòè âèãëÿä F0,1=ùx1ùp1ùp2ùp3+
ùp1ùp2p3+
+p1ùp2ùp3.
Ó ðåçóëüòàò³ ìè îòðèìàºìî îá'ºäíàíó ÌÑÀ Ì0 (òàáë.1.7). Ìè
ìàºìî ìîæëèâ³ñòü ì³í³ì³çóâàòè ôîðìóëè ïåðåõîäó òàêèì ÷èíîì: ðîçãëÿäàþ÷è ÃÑÀ  Ã0  ÿê ÃÑÀ Ãn,  ìè ï³äñòàâëÿºìî ïåâíèé íàá³ð Pn=1,
ïðè öüîìó çì³íí³
p1..pq íå çì³íþþòü ñâî¿õ çíà÷åíü ï³ä ÷àñ ïðîõîäó ïî ÃÑÀ. Òàêèì ÷èíîì, ÿêùî ó âåðøèíó Ài
ïåðåõ³ä çàâæäè çä³éñíþºòüñÿ
ïðè íåçì³ííîìó çíà÷åíí³ pq,
òî öå çíà÷åííÿ pq â ðÿäêó Ài çàì³íèìî íà “1",  à éîãî ³íâåðñ³þ íà “0". Íàïðèêëàä, ó
âåðøèíó À3 ïåðåõ³ä çä³éñíþºòüñÿ
ïðè íåçì³ííîìó çíà÷åíí³ ùp1
ùp2,
îòæå â ðÿäêó  À3 ùp1
ùp2
çàì³íèìî íà “1", à p1 ³ p2 íà “0". Ó ðåçóëüòàò³
îòðèìàºìî ôîðìóëè F3,4=ùp3,  F3,11=p3. Êåðóþ÷èñü
âèùåíàâåäåíèì ìåòîäîì, îòðèìàºìî
ì³í³ì³çîâàíó ÌÑÀ Ì0  (òàáë.1.8).
     Ïî òàáëèö³ ñêëàäåìî ôîðìóëè ïåðåõîäó äëÿ îá'ºäíàíî¿ ÃÑÀ Ã0. Ôîðìóëîþ
ïåðåõîäó áóäåìî íàçèâàòè ñë³äóþ÷å âèðàæåííÿ: Ai®Fi,1À1+..+Fi,kÀk,
 äå Fi,j- â³äïîâ³äíà
ôîðìóëà ïåðåõîäó ç
ì³í³ì³çîâàíî¿ ÌÑÀ. Ó íàøîìó
âèïàäêó îòðèìàºìî ñë³äóþ÷ó ñèñòåìó ôîðìóë:
A0®ùx1ùp1ùp2ùp3A1+ùp1ùp2p3A1+p1ùp2ùp3A1+x1ùx2ùp1ùp2ùp3A2+x1x2ùp1ùp2ùp3A3+
      
+ùx1ùp1p2p3­A8+x1ùp1p2p3A13+ùp1p2ùp3A14
A1®ùp1ùp3A2­+p1ùp3A6+ùp1p3A7
A2®ùp1ùp2ùp3A6+ùp1p2p3A18+p1ùp2p3A21
A3®ùp3A4+p3A11
A4®A5
A5®À6
                                                                                                                                                                                                                                                                                                        Òàáëèöÿ
1.7
                                                                                                                                   Îá`ºäíàíà ÌÑÀ Ìo     A1     A2     A3   A4   A5     A6    A7     A8     A9    A10     A11    A12    A13    A14    A15     A16    A17     A18      A19     A20     A21    A22     Ak  A0 _ _ _ _ x1p1p2p3+  _ _ +p1p2p3+    _ _ +p1p2p3   _ _ _ _ x1x2p1p2p3     _ _ _ x1x2p1p2p3 _ _ x1p1p2p3   _ x1p1p2p3 _   _ p1p2p3  A1 _ _ _ p1p2p3   _ _ p1p2p3 _ _ p1p2p3  A2 _ _ _ p1p2p3 _ p1p2p3   _ _ p1p2p3  A3 _ _ _ p1p2p3 _ _ p1p2p3  A4 _ _ _ p1p2p3  A5 _ _ _ p1p2p3  A6 _ p1p2p3 _ _ _ p1p2p3 _ _ p1p2p3   _ _ p1p2p3 _   _ p1p2p3  A7   _ _ x3p1p2p3 _ _ _ p1p2p3 _ _ _ x3p1p2p3  A8   _ x2p1p2p3 _ _ _ p1p2p3+  _ _ +x2p1p2p3  A9 _ p1p2p3 _ _ p1p2p3  A10 _ _ p1p2p3  A11 _ _ p1p2p3  A12 _   _ p1p2p3 _ _ p1p2p3  A13 _ p1p2p3 _   _ p1p2p3  A14 _ _   _ x1p1p2p3   _   _   x1p1p2p3  A15   _   _ x3p1p2p3 _ _   _ x3p1p2p3  A16 _   _ p1p2p3  A17   _ _ p1p2p3 _ p1p2p3  A18 _ p1p2p3  A19   _   _ _ x1x2p1p2p3       _ _ x1x2p1p2p3 _   _ _ x1p1p2p3  A20   _ _ p1p2p3  A21   _ _ p1p2p3  A22 _ _ p1p2p3
                                                                                                                                                                                                                                                                                                                 Òàáëèöÿ
1.8
                                                                                                                      Îá`ºäíàíà
ì³í³ì³çîâàíà
ÌÑÀ Ìo     A1     A2     A3   A4   A5     A6    A7     A8     A9    A10     A11    A12    A13    A14    A15     A16    A17     A18      A19     A20     A21    A22     Ak  A0 _ _ _ _ x1p1p2p3+  _ _ +p1p2p3+    _ _ +p1p2p3   _ _ _ _ x1x2p1p2p3     _ _ _ x1x2p1p2p3 _ _ x1p1p2p3   _ x1p1p2p3 _   _ p1p2p3  A1   _ _   p1p3    _  p1p3 _  p1p3  A2 _ _ _ p1p2p3 _ p1p2p3   _ _ p1p2p3  A3   _   p3    p3  A4    1  A5     1  A6  _  p1p2p3 _ _ _ p1p2p3 _ _ p1p2p3   _ _ p1p2p3 _   _ p1p2p3  A7    x3p3   _   p3  _  x3p3  A8   x2p2p3 _ _ p2p3+  _ +x2p2p3  A9    p2   _   p2  A10     1  A11     1  A12     _   p2p3 _ p2p3  A13    p3   _   p3  A14    _    x1      x1  A15      x3     _     x3  A16     1  A17   _ _ p1p2p3 _ p1p2p3  A18      1  A19     _    x1x2          x1x2    _      x1  A20       1  A21        1  A22      1
A6®ùp1p2p3A2+ùp1ùp2ùp3A7+ùp1ùp2p3A12­+p1ùp2ùp3A19+ùp1p2ùp3Ak
A7®x3p3A6+ùp3A8+ùx3p3A9
A8®x2p2p3A17+ùp2ùp3Ak+ùx2p2p3Ak
A9®p2­A8+ùp2A10
A10®A3
A11®Ak
A12®ùp2p3A22+p2ùp3A13
A13®p3A9+ùp3Ak
A14­®ùx1A15+x1A16
A15®x3A6+ùx3Ak
A16®A12
A17®p1ùp2ùp3A2­+ùp1p2p3A6
A18®Ak
A19®x1ùx2A2+x1x2A20+ùx1A21
A20­®A17
A21®Ak
A22®Ak
   Ïðè ïîáóäîâ³ ñèñòåìè äóæêîâèõ ôîðìóë ïåðåõîäó íåîáõ³äíî êîæíó ôîðìóëó ïðèâåñòè äî âèãëÿäó Àx1+Âùx1,  äå À
 -äåÿê³ âèðàçè,  à x1 ³ ùx1-ëîã³÷í³ óìîâè ïåðåõîäó. Ôîðìóëè ïåðåõîäó äëÿ âåðøèí À3,
À4, À5, À9, À10, À11, À13,
À14, À15, À16, À18, À20,
À21, À22 âæå º åëåìåíòàðíèìè (ðîçêëàäåíèìè), à â ³íøèõ º
âèðàçè âèäó Àn®xj(À)
+ùxjpi(Â).
Òóò pi â³äïîâ³äຠ÷åêàþ÷³é âåðøèí³ (ìàë.1.6). Ïîä³áíèõ âåðøèí â îá'ºäíàí³é ÃÑÀ áóòè íå ïîâèííî. Äëÿ ¿õ óñóíåííÿ ñêîðèñòàºìîñÿ ñë³äóþ÷èì
ïðàâèëîì: äîäàâàííÿ âèðàçó [PqÀn]
íå çì³íèòü ôîðìóëó,  ÿêùî íàá³ð Pq íå
âèêîðèñòîâóºòüñÿ äëÿ êîäóâàííÿ ÃÑÀ
àáî  âåðøèíà Àn  â³äñóòíÿ  â ÃÑÀ ç êîäîì Pq. Òàêèì
÷èíîì, äîäàþ÷è äîïîì³æí³ íàáîðè, ìè îòðèìàºìî ìîæëèâ³ñòü çà äîïîìîãîþ åëåìåíòàðíèõ ïåðåòâîðåíü çâåñòè
ôîðìóëè äî íåîáõ³äíîãî âèãëÿäó.
Íàïðèêëàä, ôîðìóëà A8®x2p2p3A17+ùp2ùp3Ak+ùx2p2p3A
ñïðîùóºòüñÿ òàêèì ÷èíîì   A8=p3(x2p2A17+ùx2p2Ak)+ùp3ùp2Ak=p3p2(x2A17+ùx2Ak)+ùp3ùp2Ak=
    
     
                        1    Xj       0
    
                                        Pi       0
                                     
                                       1
                  Ìàë.1.6  Ïðèêëàä ÷åêàþ÷î¿
âåðøèíè Pi
=[ùp3p2(x2A17+ùx2Ak)]+p3p2(x2A17+ùx2Ak)+ùp3ùp2Ak+[p3ùp2Ak]=ùp2Ak+p2(x2A17+ùx2Ak).
Òóò âåðøèíà À8 íå çóñòð³÷àºòüñÿ
ó  ÃÑÀ ,â êîäàõ ÿêèõ ïðèñóòí³ êîìá³íàö³¿ ùp3p2  ³  p3ùp2.
Íèæ÷å íàâåäåíî ðîçêëàä óñ³õ
íååëåìåíòàðíèõ ôîðìóë ïåðåõîäó.
 
A0=p1(ùp2ùp3A1)+ùp1(ùx1ùp2ùp3A1+ùp2p3A1+x1ùx2ùp2ùp3­A2+x1x2ùp2ùp3A3­+
      +ùx1p2p3A8+x1p2p3A13+p2ùp3A14)=p1(ùp2ùp3A1)+[p1ùp2ùp3A1]+
      +ùp1(p2(ùx1p3A8+x1p3A13+ùp3A14)+ùp2(ùx1ùp3A1+p3A1+x1ùx2ùp3A2+
      +x1x2ùp3A3­))=p1(ùp2A1)+[p1p2A1]+ùp1(p2(p3(ùx1A8+x1A13)+ùp3A14)+
      +ùp2(ùp3(ùx1A1+x1x2A3+x1ùx2A2­)+p3A1))=
p1A1+ùp1(p2(p3(
ùx1A8+
      +x1A13)+ùp3A14)+ùp2(ùp3(ùx1A1+x1(x2A3+ùx2A2))+p3A1­))
A1=ùp1­(p3A7+ùp3A2)+p1ùp3A6+[p1p3A6]=
ùp1­(p3A7+ùp3A2)+p1A6
A2=p1(ùp2p3A21)+ùp1(ùp2ùp3A6+p2p3A18)=
p1(ùp2p3A21)+[p1ùp2p3A21]+
   +ùp1­(ùp2ùp3A6+[p2ùp3A6]+p2­p3A18+[p3ùp2A18])=p1(ùp2A21)+ùp1(ùp3A6+
      +p3A18)=p1(ùp2A21)+[p1p2A21]+ùp1(ùp3A6+p3A18)=p1A21+ùp1(ùp3A6+
      +p3A18)
A6=p1(ùp2ùp3A19)+[p1ùp2p3A19]+ùp1(p2p3A2+ùp2ùp3A7+ùp2p3A12+p2ùp3Ak)=
    =p1ùp2A19+[p1p2A19]+ùp1(p2(p3A2+ùp3Ak)+ùp2(ùp3A7+p3A12­))=p1A19+
    +ùp1(p2(p3A2+ùp3Ak­)+ùp2(ùp3A7+p3A12))
A7=p3(x3A6+ùx3A9)+ùp3A8
A8=p3(x2p2A17+ùx2p2Ak)+ùp3ùp2Ak=p3p2(x2A17+ùx2Ak)+ùp3ùp2Ak=
    =[ùp3p2(x2A17+ùx2Ak)]+p3p2(x2A17+ùx2Ak)+ùp3ùp2Ak+[p3ùp2Ak]=ùp2Ak+
    +p2(x2A17+ùx2Ak)
A12=ùp2p3A22+p2ùp3A13+[p2p3A22]+[ùp2ùp3A13]=p3A22+ùp3A13
A17=p1ùp2ùp3A2+[p1ùp2p3A2]+ùp1p2p3A6+[ùp1ùp2p3A6­]=p1ùp2A2+[p1p2A2]+
      +ùp1p3A6+[ùp1ùp3A6]=p1A2+ùp1A6­
A19=x1(ùx2A2+x2A20)+ùx1A21
 
 Îá'ºäíàíó ÃÑÀ Ã0 (ìàë.1.7) ïîáóäóºìî â³äïîâ³äíî äî ôîðìóë ïåðåõîäó, çàì³íþþ÷è êîæíó ì³òêó Ài â³äïîâ³äíîþ îïåðàòîðíîþ âåðøèíîþ Yt,
à êîæíèé âèðàç  Xi ³ Pj â³äïîâ³äíèìè
óìîâíèìè âåðøèíàìè.
           
 
    
 2.ÑÈÍÒÅÇ ÀÂÒÎÌÀÒÀ Ç ÏÐÈÌÓÑÎÂÎÞ ÀÄÐÅÑÀÖ²ªÞ             ̲ÊÐÎÊÎÌÀÍÄ.
      2.1. Ïðèíöèï ðîáîòè
àâòîìàòà.
   
  Ïðè ïðèìóñîâ³é àäðåñàö³¿ àäðåñà íàñòóïíî¿ ì³êðîêîìàíäè
çàäàºòüñÿ â ïîë³ ïîòî÷íî¿ ì³êðîêîìàíäè.  Ôîðìàò ÌÊ â òàêîìó âèïàäêó ñë³äóþ÷èé
(ìàë. 2.1.).
     
1      Y           m  1        X         l   1              A0                 k  1               A1                      k
                                   Ìàë.
2.1 Ôîðìàò êîìàíäè àâòîìàòà ç ÏÀ.
 Òóò ó ïîë³ Y  ì³ñòèòüñÿ
êîä, ùî çàäຠíàá³ð
ì³êðîîïåðàö³é, ó
ïîë³ X-êîä
ëîã³÷íî¿ óìîâè, ùî ïåðåâ³ðÿºòüñÿ,  ó
ïîëÿõ A0 ³ A1- àäðåñè ïåðåõîäó ïðè íåâèêîíàíí³
ëîã³÷íî¿ óìîâè, ùî ïåðåâ³ðÿºòüñÿ àáî áåçóìîâíîìó ïåðåõîä³ ³ ïðè ³ñòèííîñò³
ëîã³÷íî¿ óìîâè â³äïîâ³äíî. Ðîçðÿäí³ñòü
ïîë³â  âèçíà÷àºòüñÿ òàêèì ÷èíîì:
    
m=]log2T[   Ò- ÷èñëî
íàáîð³â ì³êðîîïåðàö³é, ùî
âèêîðèñòîâóþòüñÿ â ÃÑÀ, â íàøîìó âèïàäêó 
Ò=17,  m=5
     
l=]log2 (L+1)[ 
L-÷èñëî ëîã³÷íèõ óìîâ ó ÃÑÀ, â íàøîìó âèïàäêó L=6, l=3
     
k=]log2 Q[   Q
-ê³ëüê³ñòü ì³êðîêîìàíä.
Ñòðóêòóðíà
ñõåìà àâòîìàòà ïðèâåäåíà íà ìàë. 2.2. Àâòîìàò ôóíêö³îíóº òàêèì ÷èíîì.  Ñõåìà çàïóñêó ñêëàäàºòüñÿ ç RS -òðèãåðà ³
ñõåìè  “&", ÿêà áëîêóº
íàäõîäæåííÿ ñèíõðî³ìïóëüñ³â íà
ÐÀÌÊ ³ ÐÌÊ.  Çà ñèãíàëîì “Ïóñê"
òðèãåð âñòàíîâëþºòüñÿ â îäèíèöþ ³ â³äáóâàºòüñÿ çàïèñ ì³êðîêîìàíä äî ðåã³ñòðó. Ïîëå Y
íàäõîäèòü íà ñõåìó ôîðìóâàííÿ ÌÎ ³ ïåðåòâîðþºòüñÿ â äåÿêèé íàá³ð ì³êðîîïåðàö³é.
Ïîëå X íàäõîäèòü äî ñõåìè ôîðìóâàííÿ àäðåñè, ÿêà  ôîðìóº ñèãíàë Z2, ÿêùî ïåðåõ³ä áåçóìîâíèé (X=0) àáî ËÓ
, ùî ïåðåâ³ðÿºòüñÿ, äîð³âíþº 0,
àáî ñèãíàë  Z1  ó âèïàäêó ³ñòèííîñò³ ËÓ. Çà ñèãíàëîì Z1(Z2)
äî àäðåñíîãî âõîäó ÏÇÏ íàäõîäèòü çíà÷åííÿ ïîëÿ A1(A0). Çà
ñèãíàëó y0 òðèãåð âñòàíîâëþºòüñÿ â íóëü ³ àâòîìàò çóïèíÿº ñâîþ
ðîáîòó. Çà ñèãíàëîì "Ïóñê" äî ÐÀÌÊ çàíîñèòüñÿ àäðåñà ïî÷àòêîâî¿ ÌÊ
(À=0).
 2.2. Ïåðåòâîðåííÿ ïî÷àòêîâî¿ ÃÑÀ.
Ïåðåòâîðåííÿ
áóäå ïîëÿãàòè â òîìó, ùî ó âñ³ îïåðàòîðí³ âåðøèíè, ïîâ'ÿçàí³ ç ê³íöåâîþ, ââîäèòüñÿ ñèãíàë y0,
à ì³æ âñ³ìà óìîâíèìè âåðøèíàìè, ÿê³ ïîâ'ÿçàí³ ç ê³íöåâîþ, ââîäèòüñÿ îïåðàòîðíà
âåðøèíà, ùî ì³ñòèòü ñèãíàë y0. Ïðè÷îìó,  öÿ âåðøèíà áóäå çàãàëüíîþ äëÿ âñ³õ óìîâíèõ.  Ç óðàõóâàííÿì âèùåñêàçàíîãî îòðèìàºìî
ïåðåòâîðåíó ÃÑÀ (ìàë. 2.3). Ó ïåðåòâîðåí³é ÃÑÀ ìè çáåð³ãàºìî ïîçíà÷åííÿ Yi, àëå ïðè
öüîìó ïàì'ÿòàºìî, ùî êîæíà ì³êðîêîìàíäà
Yi
                                                                                                                       
                                                                                                ÐÀÌÊ                     
                                                                                                                                Z1         Z2  
             
               S    T                   
&                                                  ÏÇÏ
 “Ïóñê”                                                                                                                     
                                                                                                                                                                     Ѳ           
R                                                                                                                                                                                                                                             ÐÌÊ                                                                                                                  Y                       
X             A0             
A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ÑÔÌΠ                                                                                                                                                                                                             Z1                                                                                                                                                                                                                                           y­0   ....  yi                                     ÑÔÀ                                                                                                          äî ÎÀ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Z2
   
                                   Ìàë.2.2. Ñòðóêòóðíà ñõåìà àâòîìàòà ç ÏÀ
 ðîçáèâàºòüñÿ
íà ì³êðîîïåðàö³¿ yi..yj
çã³äíî ç
òàáë. 2.1.
                                                                                                                      Òàáëèöÿ
2.1.
                                               Ðîçïîä³ë
ÌÎ ïî ì³êðîêîìàíäàì.            ÌÊ Ì³êðîîïåðàö³¿ ÌÊ Ì³êðîîïåðàö³¿ Y1 y1y2y9y10 Y12 y5y6y12y17y19 Y2 y1y5y12y19 Y13 y4y6y20y21 Y3 y1y6y11y20 Y14 y3y11y17y18y22 Y5 y3y4y13y30 Y15 y4y5y6y18y19y23 Y7 y2y6y7y16 Y16 y12y14y16y24 Y8 y5y13y15y29 Y17 y2y13y25 Y9 y6y17 Y18 y5 Y10 y3y4y5y18y19 Y20 y3y27y28 Y11 y7y8y17y20
                                                  
  2.3.Ôîðìóâàííÿ âì³ñòó êåðóþ÷î¿ ïàì'ÿò³.
          Ïåðøèé åòàï - âèä³ëåííÿ ì³êðîêîìàíä çàäàíîãî ôîðìàòó.  àâòîìàò³ ç ÏÀ â îäíîìó
òàêò³ ìîæóòü âèêîíóâàòèñÿ ÌÎ ³ ïåðåâ³ðÿòèñÿ ëîã³÷íà óìîâà. Òîìó ì³êðîêîìàíäà
â³äïîâ³äຠïàð³   ÎÏÅÐÀÒÎÐÍÀ  ÂÅÐØÈÍÀ - ÓÌÎÂÍÀ ÂÅÐØÈÍÀ. Âèõîäÿ÷è ç öüîãî,
îòðèìàºìî, ùî ìîæëèâèìè º ïàðè: 
ÎÏÅÐÀÒÎÐÍÀ  ÂÅÐØÈÍÀ - ÓÌÎÂÍÀ
ÂÅÐØÈÍÀ, ÎÏÅÐÀÒÎÐÍÀ ÂÅÐØÈÍÀ - ÁÅÇÓÌÎÂÍÈÉ ÏÅÐÅÕ²Ä, ÏÎÐÎÆÍß ÎÏÅÐÀÒÎÐÍÀ - ÓÌÎÂÍÀ
ÂÅÐØÈÍÀ. Ïðè öüîìó ïîòð³áíî âðàõîâóâàòè, ùî ïðè âèáîð³ ïàðè ÎÏÅÐÀÒÎÐÍÀ  ÂÅÐØÈÍÀ - ÓÌÎÂÍÀ ÂÅÐØÈÍÀ  íåäîïóñòèì ïåðåõ³ä ççîâí³ â òî÷êó ì³æ
îïåðàòîðíîþ ³ óìîâíîþ âåðøèíàìè, êð³ì ñèòóàö³¿, êîëè óìîâíà âåðøèíà âõîäèòü äî
ñêëàäó ³íøî¿ ì³êðîêîìàíäè.
Ó ðåçóëüòàò³ ìè îòðèìàºìî ñë³äóþ÷å
ðàçáèòòÿ íà ì³êðîêîìàíäè
(ìàë. 2.3.). Ìè îòðèìàëè 38 äîïóñòèìèõ ÌÊ. Çàêîäóºìî ¿õ â ïðèðîäíîìó ïîðÿäêó,
ïðèâëàñíèâøè ïî÷àòêîâ³é
ÌÊ íóëüîâó àäðåñó (òàáë.2.2).  Äëÿ öüîãî
íåîáõ³äíî q=]log2N[ 
ðîçðÿä³â, äå N- ê³ëüê³ñòü ÌÊ çàäàíîãî ôîðìàòó. Ó íàøîìó âèïàäêó N=38,
q=6.
                                                                         Òàáëèöÿ
2.2                                                              
                                                        Êîäóâàííÿ ÌÊ
  ÌÊ À1À2À3À4 À5À6 Î1 0  0  0  0  0  0 Î2 0  0  0  0  0  1  ...... ........................  Î38 1  0  0  1  0  1
                                                                                 
     Àíàëîã³÷íèì ÷èíîì çàêîäóºìî îïåðàòîðè Yi,  íàäàâøè íóëüîâèé êîä ïîðîæíüîìó îïåðàòîðíîìó ïîëþ (òàáë. 2.3).                                                       
 
         
Òàáëèöÿ 2.3                                                                                                     
 Êîäóâàííÿ Y
  Yi    T2T3T4T5T6 Æ        00000  Y1        00001  Y2        00010    Y3        00011 Y5        00100 Y7        00101 Y8        00110 Y9        00111 Y10        01000 Y11        01001 Y12        01010 Y13        01011 Y14        01100 Y15        01101 Y16        01110 Y17        01111 Y18        10000 Y20        10001  
           
                                                                      
                                                                                                                             Òàáëèöÿ 2.5
                                                           Âì³ñò
êåðóþ÷î¿
ïàì`ÿò³.                                                                                                                                                              ¹    A     FY   FX       FA0       FA1 Îï. A1A2A3A4A5A6 T1T2T3T4T5T6 T7T8T9 T10T11T12T13T14T15 T16T17T18T19T20T21 1  000000   000000  100     000001     001100 2  000001   000000  101     000010     011001 3  000010   000000  110     000011     001100 4  000011   000000  001     001100     000100 5  000100   000000  010     001001     000101 6  000101   000110  110     000111     000110 7  000110   101100  000     000000     000000 8  000111   000111  000     001000     000000 9  001000   001001  000     001110     000000 10  001001   001000  100     001010     011000 11  001010   000000  110     001110     001011 12  001011   100111  000     000000     000000 13  001100   000001  100     001101     001110 14  001101   000000  110     001001     010010 15  001110   000100  100     001111     010111 16  001111   000000  101     010001     010000 17  010000   000000  110     010100     010101 18  010001   000000  110     010010     011110 19  010010   000110  110     011111     010011 20  010011   000000  011     100011     001110 21  010100   100000  000     000000     000000 22  010101   000000  010     001001     010110 23  010110   000001  000     100101     000000 24  010111   001010  001     011000     010101 25  011000   101010  000     000000     000000 26  011001   000000  110     011011     011010 27  011010   000000  001     011111     100001 28  011011   001101  001     011100     011101 29  011100   001110  011     010100     001110 30  011101   000101  000     011110     000000 31  011110   001111  010     100001     100000 32  011111   000111  101     010100     100010 33  100000   100011  000     000000     000000 34  100001   010000  110     010100     100011 35  100010   000000  010     010100     100101 36  100011   000001  101     100100     011111 37  100100   001011  000     000101     000000 38  100101   010001  100     001110     001001
   
2.4. Ñèíòåç ñõåìè
àâòîìàòà.
    Ñõåìà ÑÔÀ
ÿâëÿº ñîáîþ ìóëüòèïëåêñîð,
ÿêèé â çàëåæíîñò³ â³ä êîäó ëîã³÷íî¿ óìîâè, ùî ïåðåâ³ðÿºòüñÿ, ïåðåäຠíà âèõ³ä Z1
çíà÷åííÿ â³äïîâ³äíî¿
ËÓ. Ïðè öüîìó ñèãíàë Z2 çàâæäè º ³íâåðñ³ºþ ñèãíàëó Z1.  Òàêèì ÷èíîì,  îòðèìàºìî ñë³äóþ÷³
âèðàçè äëÿ Z1  ³ Z­2:
 
         Z1=X1ùT7ùT8T9+X2ùT7T8ùT9+X3ùT7T8T9+P1T7ùT8ùT9+P2T7ùT8T9+P3T7T8ùT9
            Z2=ùZ1   
àáî, çâ³âøè äî çàäàíîãî áàçèñó (4 ÀÁÎ-Ͳ), îòðèìàºìî
 
         Z1=ù ù(ù ù(A+B+C+D)+E+F), äå
         A=ù ù( X1ùT7ùT8T9)=ù(ùX1+T7+T8+ùT9)
         B=ù ù( X2ùT7T8ùT9)=ù(ùX2+T7+ùT8+T9)
         C=ù ù( X3ùT7T8T9)=ù(ùX3+T7+ùT8+ùT9)
         D=ù ù( P1T7ùT8ùT9)=ù(ùP1+ùT7+T8+T9)
         E=ù ù( P2T7ùT8T9)=ù(ùP2+ùT7+T8+ùT9)
         F=ù ù( P3T7T8ùT9)=ù(ùP3+ùT7+ùT8+T9)                                                                                                                    
²íôîðìàö³ÿ, ùî
íàäõîäèòü íà àäðåñí³ âõîäè ÏÇÏ
ôîðìóºòüñÿ òàêèì ÷èíîì: Ai=A0iZ1+A1iZ2
àáî,  ïðèâîäÿ÷è äî çàäàíîãî áàçèñó, îòðèìóºìî Ai=ùù(ù(ùA0i+ùZ1)+ù(ùA1i+ùZ2)).                                                                                         
  Ñèíòåçóºìî òåïåð ñõåìó äåøèôðàòîðà, ùî ôîðìóº ñèãíàëè ì³êðîîïåðàö³é
yi. Ïîÿâà îäèíèö³, â³äïîâ³äíî¿ êîæíîìó Y, â³äáóâàºòüñÿ ïðè ïîÿâ³ íà âõîä³ äåøèôðàòîðà êîäó äàíîãî Y, òîáòî Yi=T2eÙT3eÙT4åÙT5åÙT6å,
äå åÎ{0,1} T0=ùT, T1=T.
Àáî ïðèâîäÿ÷è äî çàäàíîãî áàçèñó, îòðèìàºìî:                                        Yi=ù(ù ù(T2ùe+T3ùe+T4ùå+T5ùå)+T6ùå). Òàêèì
÷èíîì, ñõåìà,  ùî ôîðìóº ñèãíàë Y ç ï`ÿòèðîçðÿäíîãî êîäó âèãëÿäຠòàêèì
÷èíîì(ìàë. 2.4)                                                                                                           
                                                                                                                                                                                                 T6ùe   
                                                                         
1      
1               1          Yi        
                                   
                                        T2ùe
                                  Ìàë. 2.4. Ñõåìà
ôîðìóâàííÿ ñèãíàëó Yi.                                 
Âðàõîâóþ÷è, ùî
ðîçðÿä T2 ð³âíèé “1"  ïðè ôîðìóâàíí³ ò³ëüêè äâîõ
ñèãíàë³â Y18 ³ Y20, òî ñõåìó(ìàë. 2.4)  áóäåìî âèêîðèñòîâóâàòè äëÿ ôîðìóâàííÿ Y1,
Y20, äëÿ ÿêèõ ñï³âïàäàþòü
ìîëîäø³ ÷îòèðè ðîçðÿäè òà äëÿ Y18, äëÿ ÿêîãî ìîëîäø³
÷îòèðè ðîçðÿäè ñï³âïàäàþòü
ç êîäîì ïîðîæíüî¿
îïåðàòîðíî¿
âåðøèíè. À
äëÿ âñ³õ ³íøèõ Y ñõåìó ìîæíà ñïðîñòèòè (ìàë.2.5.).              
                                                     
T6ùe
                                                                           1           Yi
                                                      T3ùe                     
                         Ìàë.2.5. Ñïðîùåíà ñõåìà ôîðìóâàííÿ ñèãíàëó
Yi.
 Çã³äíî ç
íàâåäåíèìè ñõåìàìè çàïèøåìî ôîðìóëè äëÿ âñ³õ Yi. Y11=ù(ùT3+T4+T5+ùT6) Y12=ù(ùT3+T4+ùT5+T6) Y13= ù(ùT3+T4+ùT5+ùT6) Y14= ù(ùT3+ùT4+T5+T6) Y15= ù(ùT3+ùT4+T5+ùT6) Y16= ù(ùT3+ùT4+ùT5+T6) Y17= ù(ùT3+ùT4+ùT5+ùT6) Y18=ù (ù ù(ùT2+T3+T4+T5)+T6) Y20=ù (ù ù(ùT2+T3+T4+T5)+ùT6)
Y1=ù (ù ù(T2+T3+T4+T5)+ùT6)
Y2=
ù(T3+T4+ùT5+T6)
Y3=
ù(T3+T4+ùT5+ùT6)
Y5=
ù(T3+ùT4+T5+T6)
Y7=
ù(T3+ùT4+T5+ùT6)
Y8=
ù(T3+ùT4+ùT5+T6)
Y9=
ù(T3+ùT4+ùT5+ùT6)
Y10=ù(ùT3+T4+T5+T6)
Ñèãíàëè ì³êðîîïåðàö³é
yj îòðèìàºìî,
îá'ºäíóþ÷è ïî “àáî" âèõîäè 
â³äïîâ³äí³ îïåðàòîðàì Yi, â ÿêèõ çóñòð³÷àºòüñÿ ÌÎ yj. Ïðè öüîìó áóäåìî êîðèñòóâàòèñÿ òàáëèöåþ                   
                              Òàáëèöÿ 2.5.
Ðîçïîä³ë  ÌÎ çà ì³êðî-
êîìàíäàìè   ÌÎ    íîìåðè ÌÊ y1 1,2,3 y2 1,7,17 y3 5,10,14,20 y4 5,10,13,15 y5 2,8,10,12,15,18 y6 3,7,9,12,13,15 y7 7,11 y8 11 y9 1 y10 1 y11 3,14 y12 2,12,16 y13 5,8,17 y14 16 y15 8 y16 7,16 y17 9,11,12,14 y18 10,14,15 y19 2,10,12,15 y20 3,11,13 y21 13 y22 14 y23 15 y24 16 y25 17 y27 20 y28 20 y29 8 y30 5
  
Íà íàñòóïíîìó åòàï³
ñèíòåçóºìî ñõåìè ÐÀÌÊ ³ ÐÌÊ, âèêîðèñòîâóþ÷è ùRùS òðèãåðè. Ñêîðèñòàºìîñÿ êëàñè÷íèì
ìåòîäîì ñèíòåçó ðåã³ñòð³â
çàïîâíèìî ñë³äóþ÷ó
òàáëèöþ (òàáë. 2.6.).
                                   Òàáëèöÿ
2.6.
       Ñèíòåç ÐÀÌÊ òà ÐÌÊ  Çàïîâíèìî êàðòè Êàðíî:                  Qt\Ai  0    1  0 * 1   ùR=Ai  1 0 1       Qt\Ai   0    1  0 1 0   ùS=ùAi  1 1 * Ñ Ai Qt Qt+1 Ct ùR ùS 0 0 0 0 0 * * 0 0 1 1 0 * * 0 1 0 0 0 * * 0 1 1 1 0 * * 1 0 0 0 1 * 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 *
 Ó ðåçóëüòàò³ îòðèìàºìî
ñë³äóþ÷ó
ñõåìó äëÿ áàçîâîãî åëåìåíòó ÐÀÌÊ òà ÐÌÊ (ìàë.2.6).
                                     Ai
                                                            1                    S    TT            Q
                                   Ѳ                                           C
                                                                                  R
                            “Reset”                                          R                               ùQ
                                                                                 
                                      Ìàë. 2.6. Áàçîâèé åëåìåíò ðåã³ñòðà.
   Ñõåìà ÐÀÌÊ ì³ñòèòü
6 òàêèõ åëåìåíò³â,
à ñõåìà ÐÌÊ - 21. Ïðè ïîáóäîâ³
ñõåìè ñèãíàëè ùT1..ùT21
áóäåìî çí³ìàòè ç ³íâåðñíèõ
âèõîä³â åëåìåíò³â
ðåã³ñòð³â. ʳëüê³ñòü ì³êðîñõåì
ÏÇÏ âèçíà÷èìî çà ôîðìóëîþ: NÏÇÏ­=]R/3[,  äå R - ðîçðÿäí³ñòü
ì³êðîêîìàíäè R=21, NÏÇÏ=7. Äëÿ çáåð³ãàííÿ
ì³êðîïðîãðàìè äîñèòü îäí³º¿ ë³í³éêè ÏÇÏ, îñê³ëüêè QÏÇÏ=8, òîáòî îäíà ì³êðîñõåìà ðîçðàõîâàíà íà çáåð³ãàííÿ 256  òðüîõá³òîâèõ
êîìá³íàö³é, à â íàøîìó âèïàäêó ïîòð³áíî ò³ëüêè 38. Ïðè ïîáóäîâ³
ñõåìè áóäåìî çàïèñóâàòè â ÐÀÌÊ ³íâåðñ³þ àäðåñè, à äî ÏÇÏ áóäåìî ïîäàâàòè àäðåñó ç ³íâåðñíèõ âèõîä³â åëåìåíò³â ðåã³ñòðà,
òàêèì ÷èíîì, ìè çàîùàäèìî
6 åëåìåíò³â-³íâåðòîð³â
ó ÑÔÀ.  Ç âðàõóâàííÿì âèùåñêàçàíîãî ïîáóäóºìî ñõåìó àâòîìàòà ç
ïðèìóñîâîþ àäðåñàö³ºþ ì³êðîêîìàíä(ìàë.
2.7).
3.ÑÈÍÒÅÇ ÀÂÒÎÌÀÒÀ Ç ÏÐÈÐÎÄÍÎÞ
ÀÄÐÅÑÀÖ²ªÞ    ̲ÊÐÎÊÎÌÀÍÄ
3.1.
Ïðèíöèï ðîáîòè àâòîìàòà.
   
Ïðè ïðèðîäí³é àäðåñàö³¿ ìèêðîêîìàíä ³ñíóº òðè ôîðìàòà ÌÊ (ìàë. 3.1.).
                               Ï      1                         FY                           m       ÎÌÊ              
                                                                                                                                                                            Ï     1            FX      l   1               FA                          r       ÓÌÊ1                                                                                                                                                                                                                                                                                                                                      Ï     1         Æ         l   1              
FA                          r    
  ÓÌÊ2
            Ìàë.3.1.
Ôîðìàòè ì³êðîêîìàíä
àâòîìàòà ç ïðèðîäíîþ àäðåñàö³ºþ..                             
  
Òóò ôîðìàò ÎÌÊ â³äïîâ³äຠîïåðàòîðí³é âåðøèí³, ÓÌÊ1-óìîâí³é, à ÓÌÊ2-âåðøèí³ áåçóìîâíîãî
ïåðåõîäó. Ïðè ïîäà÷³ ñèãíàëó “ïóñê" ë³÷èëüíèê ËÀÌÊ îáíóëÿºòüñÿ, ³ çà
ñèãíàëîì Ѳ â³äáóâàºòüñÿ çàïèñ ÌÊ äî ðåã³ñòðà. ÑÔÌΠ ôîðìóº â³äïîâ³äí³ ÌÎ ïðè Ï=1 àáî âèäຠíà âñ³õ âèõîäàõ íóë³ ïðè
Ï=0. ÑÔÀ â çàëåæíîñò³ â³ä Ï ³ âì³ñòó
ïîëÿ FX,  ôîðìóº ñèãíàëè Z1 ³
Z2. Ñèãíàë Z1 äîçâîëÿº 
ïðîõîäæåííÿ ñèíõðî³ìïóëüñ³â íà ë³÷èëüíèé
âõ³ä ËÀÌÊ, à Z2 äîçâîëÿº çàïèñ äî ë³÷èëüíèêà àäðåñè íàñòóïíî¿ ÌÊ ç
ïðèõîäîì  ñèíõðî³ìïóëüñó.
   
Âèçíà÷èìî ðîçðÿäí³ñòü
ïîë³â. l=]log2(L+1)[, äå L-÷èñëî óìîâíèõ âåðøèí. L=6, l=3
   
m=]log2T[   Ò- ÷èñëî
íàáîð³â ì³êðîîïåðàö³é, ùî
âèêîðèñòîâóþòüñÿ â ÃÑÀ, â íàøîìó âèïàäêó 
Ò=17,  m=5
   
r=]log2 Q[,  Q -
ê³ëüê³ñòü ì³êðîêîìàíä.
    3.2.Ïåðåòâîðåííÿ ïî÷àòêîâî¿ ÃÑÀ.
 
Ïåðåòâîðåííÿ áóäå ïîëÿãàòè â òîìó, ùî äî âñ³õ îïåðàòîðíèõ âåðøèí,
ïîâ'ÿçàíèõ ç ê³íöåâîþ, ââîäèòüñÿ ñèãíàë y0, à ì³æ âñ³ìà óìîâíèìè
âåðøèíàìè, ÿê³ ïîâ'ÿçàí³ ç ê³íöåâîþ, ââîäèòüñÿ îïåðàòîðíà âåðøèíà, ùî ì³ñòèòü
ñèãíàë y0. Êð³ì öüîãî, â ÃÑÀ ââîäÿòüñÿ ñïåö³àëüí³ âåðøèíè
áåçóìîâíîãî ïåðåõîäó X0, â³äïîâ³äí³ ôîðìàòó ÓÌÊ2. Ââåäåííÿ òàêèõ
âåðøèí íåîáõ³äíå äëÿ âèêëþ÷åííÿ êîíôë³êò³â àäðåñàö³¿ ì³êðîêîìàíä. Ó àâòîìàò³ ç  ïðèðîäíîþ àäðåñàö³ºþ (ðèñ3.2.) ïðè ³ñòèííîñò³(ïîìèëêîâ³ñòü) ëîã³÷íî¿ óìîâè
ïåðåõ³ä çä³éñíþºòüñÿ äî âåðøèíè ç àäðåñîþ íà îäèíèöþ âåëèêèì, à ïðè
(ïîìèëêîâ³ñòü)³ñòèííîñò³ ËÓ ïåðåõ³ä â³äáóâàºòüñÿ çà àäðåñîþ, çàïèñàíîþ â ïîë³
FA. Ó íàøîìó âèïàäêó áóäåìî äîäàâàòè îäèíèöþ 
ïðè ³ñòèííîñò³ ËÓ àáî ïðè ïåðåõîä³ ç îïåðàòîðíîé âåðøèíè. ßêùî â îäí³é
òî÷ö³ ñõîäèòüñÿ äåê³ëüêà ïåðåõîä³â ïî 
1" àáî ç îïåðàòîðíî¿
âåðøèíè, òî âñ³ âåðøèíè ç ÿêèõ çä³éñíþâàâñÿ ïåðåõ³ä, ïîâèíí³ áóëè á ìàòè
îäíàêîâó (íà îäèíèöþ ìåíøó ) àäðåñó, í³æ íàñòóïíà êîìàíäà. Àëå öå íåìîæëèâî.
                       Z1                      +1          
   ñ³                                                  Z2     À                                                                                                                                                              ËÀÌÊ
 “Ïóñê”           
                                            1                                                                                                                                                                                                                                                                                                                       ÏÇÏ
                                  
                                                                                       ÐÌÊ
                                                 FY                               Ï             FX         FA                                                        
                                                   ÑÔÌΠ                                                                
                                                                                                                 ÑÔÀ            Z1   
                                                                                                                                                                                             
y0.....yi                       ê
ÎÀ                                                 
                                                                                                                                     Z2
           Ìàë.3.2.
Ñòðóêòóðíà ñõåìà àâòîìàòà ç ïðèðîäíîþ àäðåñàö³ºþ.
Äëÿ âèêëþ÷åííÿ ïîä³áíèõ ñèòóàö³é
ââîäÿòü ñïåö³àëüíó âåðøèíó áåçóìîâíîãî ïåðõîäó (ìàë. 3.3). Äàí³ âåðøèíè äîäàºìî
òàêèì ÷èíîì, ùîá â îäí³é òî÷ö³ ñõîäèëàñÿ áóäü-ÿêà ê³ëüê³ñòü ïåðåõîä³â ïî
0" ³ ò³ëüêè îäèí ïî “1" àáî ç îïåðàòîðíî¿ âåðøèíè. Ç âðàõóâàííÿì âêàçàíèõ
ïåðåòâîðåíü îòðèìàºìî ïåðåòâîðåíó ÃÑÀ (ìàë. 3.4).
             
                                                                             X0           0                                   
                                                                                                                                                                                                                      1                                                                
                                   Ìàë.
3.3. Âåðøèíà áåçóìîâíîãî ïåðåõîäó.
    3.3.Ôîðìóâàííÿ âì³ñòó êåðóþ÷î¿ ïàì'ÿò³.
 
Íà ïåðåòâîðåí³é
ÃÑÀ âèä³ëèìî ì³êðîêîìàíäè
ôîðìàò³â ÎÌÊ, ÓÌÊ1, ÓÌÊ2. Ó ðåçóëüòàò³ îòðèìàºìî 63 ÌÊ. Âèêîíàºìî ¿õ àäðåñàö³þ.
Äëÿ öüîãî çàïèøåìî âñ³ ïðèðîäí³ ïîñë³äîâíîñò³ êîìàíä (ëàíöþæêè âåðøèí, ïåðåõ³ä
ì³æ ÿêèìè çä³éñíþºòüñÿ ïî “1" àáî ÷åðåç îïåðàòîðíó âåðøèíó). Ó ðåçóëüòàò³
îòðèìàºìî:
a1=[O1,O5]
a2=[ O2
,O6 ,O7 ,O36 ,O48 ,O51
,O55 ,O34 ,O47 ,O49 ,O56
,O59 ,O12 ,O16 ,O45]
a3=[ O3
,O9 ,O13 ,O18]
a4=[ O4
,O10 ,O11]
a5=[ O8
,O14 ,O20 ,O30 ,O32 ,O35]
a6=[ O60
,O15 ,O21 ,O22]
a7=[ O17
,O52 ,O57 ,O61 ,O62]
a8=[ O19
,O28 ,O29]
a9=[ O23
,O25 ,O27 ,O31 ,O37 ,O44
,O43 ,O53 ,O54]
a10=[ O24
,O26]
a11=[ O33]
a12=[ O38
,O41 ,O42]
a13=[ O39
,O40]
a14=[ O46]
a15=[ O50]
a16=[ O58]
a17=[ O63]­
Ïåðåðàõóºìî â òàáëèö³ àäðåñàö³¿ (òàáë.
3.1) ï³äðÿä âñ³ ïîñë³äîâíîñò³ a1-a17 ³ çàêîäóºìî ¿õ
R-ðîçðÿäíèì êîäîì. R=]log2N[, N-ê³ëüê³ñòü ì³êðîêîìàíä (N=63, R=6).  Çàêîäóºìî òàêîæ îïåðàòîðè Yi,
ïîñòàâèâøè ¿ì ó â³äïîâ³äí³ñòü ï`ÿòèðîçðÿäíèé êîä. Áóäåìî âèêîðèñòîâóâàòè òå æ
êîäóâàííÿ, ùî ³ â àâòîìàò³ ç ÏÀ.(òàáë. 2.3., 2.4). Ó òàáëèö³ 3.2 â³äîáðàçèìî
âì³ñò êåðóþ÷î¿ ïàì'ÿò³, çàïîâíèâøè ïîëÿ FX, FY, FA.
                                   Òàáëèöÿ
3.1.                                              Òàáëèöÿ 3.1.  
                                                                                                        (ïðîäîâæåííÿ)
                           Àäðåñàö³ÿ ÌÊ.      ìê À1À2À3À4À5À6 O1   000000 O5   000001 O2   000010 O6   000011 O7   000100 O36   000101 O48   000110 O51   000111 O55   001000 O34   001001 O47   001010 O49   001011 O56   001100 O59   001101 O12   001110 O16   001111 O45   010000 O3   010001 O9   010010 O13   010011 O18   010100 O4   010101 O10   010110 O11   010111 O8   011000 O14   011001 O20   011010 O30   011011 O32   011100 O35   011101 O60   011110 O15   011111 O21   100000 O22   100001 O17   100010 O52   100011 O57   100100 O61   100101 O62   100110
 
                                                                                                                             Òàáëèöÿ 3.2.
                             Âì³ñò êåðóþ÷î¿
ïàì`ÿò³
àâòîìàòà ç ïðèðîäíîþ àäðåñàö³ºþ. ÌÊ    Àäðåñà  Ï FY    Ôîðìóëà ïåðåõîäó    FX          FA À1À2À3À4À5À6 T1 T2T3T4 T5T6T7T8T9T10 O1  000000 1 100   000010 O1®ùP1O2+P1O5 O5  000001 1 000   010010 O5®O9 O2  000010 1 101   010001 O2®ùP2O3­+P2O6 O6  000011 1 110   011000 O6®ùP3O8+P3O7 O7  000100 1 001   001001 O7®ùX1O34+X1O36 O36  000101 0 010   000000 O36®O48 O48  000110 1 110   111110 O48®ùP3O63+P3O51 O51  000111 0 000   010000 O51®O55 O55  001000 1 101   011110 O55®ùP2O60+P2O34 O34  001001 0 000   111000 O34®O47 O47  001010 1 101   111011 O47®ùP2O46+P2O49 O49  001011 1 010   111100 O49®ùX2O50+X2O56 O56  001100 0 010   001000 O56®O59 O59  001101 1 100   101100 O59®ùP1O27+P1O12 O12  001110 0 001   000000 O12®O16 O16  001111 1 100   110011 O16®ùP1O24+P1O45 O45  010000 0 101   010000 O45®K O3  010001 1 110   010101 O3®ùP3O4+P3O9 O9  010010 0 000   001000 O9®O13 O13  010011 1 100   100010 O13®ùP1O17+P1O18 O18  010100 1 000   101100 O18®ùO27 O4  010101 1 001   010010 O4®ùX1O9+X1O10 O10  010110 1 010   001110 O10®ùX2O12+X2O11 O11  010111 1 000   011111 O11®O15 O8  011000 0 001   101000 O8®O14 O14  011001 1 001   100111 O14®ùX1O19+X1O20 O20  011010 0 000   101000 O20®O30 O30  011011 0 001   111000 O30®O32 O32  011100 1 110   000101 O32®ùP3O36+P3O35 O35  011101 0 100   011000 O35®K O60  011110 0 001   011000 O60®ùO15 O15  011111 0 000   110000 O15®O21 O21  100000 1 110   101010 O21®ùP3O23+P3O22 O22  100001 0 101   100000 O22®K O17  100010 1 110   001110 O17®ùP3O12+P3O52 O52  100011 0 000   110000 O52®O57 O57  100100 1 110   001001 O57®ùP3O34+P3O61 O61  100101 1 011   000111 O61®ùX3O51+X3O62 O62  100110 1 000   101100 O62®O27 O19  100111 0 001   110000 O19®O28
                                                                                                                           
                                                                                                                              Òàáëèöà 3.2.  
                                                                                                                          (ïðîäîâæåííÿ) O28  101000 1 011   110101 O28®ùX3O33+X3O29 O29  101001 1 000   101100 O29®O27 O23  101010 0 000   111000 O23®O25 O25  101011 0 001   001000 O25®O27 O27  101100 0 000   100000 O27®O31 O31  101101 1 100   110110 O31®ùP1O38+P1O37 O37  101110 0 001   010000 O37®O44 O44  101111 1 001   010000 O44®ùX1O45+X1O43 O43  110000 1 010   001110 O43®ùX2O12+X2O53 O53  110001 0 000   001000 O53®O54 O54  110010 1 000   001100 O54®O56 O24  110011 1 110   101100 O24®ùP3O27+P3O26 O26  110100 0 100   111000 O26®K O33  110101 0 100   000000 O33®K O38  110110 1 101   111001 O38®ùP2O39+P2O41 O41  110111 1 110   111101 O41®ùP3O58+P3O42 O42  111000 1 000   001110 O42®ùO12 O39  111001 1 110   100011 O39®ùP3O52+P3O40 O40  111010 1 000   011011 O40®O30 O46  111011 0 100   000000 O46®K O50  111100 0 100   000000 O50®K O58  111101 0 100   000000 O58®K O63  111110 0 100   000000 O63®K
3.4.
Ñèíòåç ñõåìè àâòîìàòà.
 
Ñèíòåçóºìî ñõåìó, ùî ôîðìóº ñèãíàë Z1. Ñèãíàë Z1
ð³âíèé 1, ÿêùî îçíàêà Ï=0 àáî Ï=1 ³ ïðè öüîìó ëîã³÷íà óìîâà, ùî ïåðåâ³ðÿºòüñÿ,
ñòèííà. Ñêîðèñòàºìîñÿ ôîðìóëîþ Z1 äëÿ àâòîìàòà ç ÏÀ, ÿêà â
çàëåæíîñò³  â³ä êîäó óìîâè ïåðåäຠíà
âèõ³ä Z1 çíà÷åííÿ â³äïîâ³äíîãî ËÓ.
     
Z1=X1ùT2ùT3T4+X2ùT2T3ùT4+X3ùT2T3T4+P1T2ùT3ùT4+P2T2ùT3T4+P3T2T3ùT4
Ç âðàõóâàííÿì âèùåíàâåäåíèõ âèìîã
çàïèøåìî ôîðìóëè äëÿ ñèãíàë³â Z1 ³ Z2  â
àâòîìàò³ ç ïðèðîäíîþ àäðåñàö³ºþ.
      
Z1=ùT1+T1(X1ùT2ùT3T4+X2ùT2T3ùT4+X3ùT2T3T4+P1T2ùT3ùT4+P2T2ùT3T4+P3T2T3ùT4)
      
Z2=ùZ1
    
Àáî , çâ³âøè äî
çàäàíîãî áàçèñó îòðèìàºìî:
       
Z1=ù ù(ù(ù(ù ù(A+B+C+D)+E+F)+ùT1)+ùT1),
ãäå
   
     A=ù ù( X1ùT7ùT8T9)=ù(ùX1+T2+T3+ùT4)
         B=ù ù( X2ùT7T8ùT9)=ù(ùX2+T2+ùT3+T4)
         C=ù ù( X3ùT7T8T9)=ù(ùX3+T2+ùT3+ùT4)
         D=ù ù( P1T7ùT8ùT9)=ù(ùP1+ùT2+T3+T4)
         E=ù ù( P2T7ùT8T9)=ù(ùP2+ùT2+T3+ùT4)
         F=ù ù( P3T7T8ùT9)=ù(ùP3+ùT2+ùT3+T4)          
Ñõåìà ôîðìóâàííÿ ÌÎ ïîä³áíà ÑÔÌÎ
àâòîìàòà ç ÏÀ, àëå ïîÿâà ñèãíàë³â íà âèõîäàõ yi ìîæëèâà ò³ëüêè ïðè
Ï=0, òîáòî êîëè ïîòî÷íà ì³êðîêîìàíäà
â³äïîâ³äຠîïåðàòîðí³é
âåðøèí³. Òîìó ñõåìó ôîðìóâàííÿ Yi çì³íèìî òàêèì ÷èíîì: ñèãíàë ùT1(ùÏ)
êîí`þíêòèâíî îá'ºäíàºìî ç êîæíèì ñèãíàëîì T3...T7,ùT3...ùT7
(ìàë. 3.5). Ïðè öüîìó â³äñóòí³ñòü öèõ ñèãíàë³â 
ïðèâåäå äî â³äñóòíîñò³ ñèãíàë³â yi, áî êîìá³íàö³ÿ ç óñ³õ íóë³â íà
âõîä³
äíøèôðàòîðà â³äïîâ³äàº
ïîðîæí³é
îïåðàòîðí³é
âåðøèí³.
Âèíÿòîê ñêëàäຠñèãíàë y0, äëÿ ÿêîãî ïåðåäáà÷åíèé îêðåìèé ðîçðÿä,
òîìó éîãî ìè êîí`þíêòèâíî îá'ºäíàºìî ç ñèãíàëîì ùT1(ùÏ) (ìàë. 3.6.)
            ùT3...ùT7                                                                          T3..T7    
                                 1          
T3...T7                                                    1            ùT3...ùT7
                                                                                  
                         T1                                                                                               T1                                                                       
                                                               Ìàë.3.5. Ñõåìè
ï³äêëþ÷åííÿ
ùÏ.
                      ùT2   
                             1       y0  
                                                                                           
                      T1
                                               Ðèñ.3.6.Ñõåìà
ôîðìóâàííÿ y0.
Ñõåìà áàçîâîãî åëåìåíòó ÐÌÊ àíàëîã³÷íà
â³äïîâ³äí³é ñõåì³ â àâòîìàò³ ç ÏÀ(ìàë2.6). Ó ÿêîñò³ ËÀÌÊ áóäåìî âèêîðèñòîâóâàòè
ë³÷èëüíèê,  ùî ìຠñë³äóþ÷ó
ôóíêö³îíàëüíó ñõåìó(ìàë. 3.7.).  Âõ³ä V
â³äïîâ³äຠñèãíàëó Z1, ÿêùî â³í ð³âíèé 1, òî ËÀÌÊ çá³ëüøóº ñâ³é
âì³ñò íà 1, â ïðîòèëåæíîìó âèïàäêó, íà âèõ³ä ïåðåäàºòüñÿ ³íôîðìàö³ÿ ç âõîä³â A1...Ai.
Ñèíòåçóºìî ë³÷èëüíèê ç êð³çíèì
ïåðåíåñåííÿì. Äëÿ öüîãî ñêëàäåìî ñë³äóþ÷ó òàáëèöþ(òàáë.3.3).Òàáëèöÿ ñêëàäåíà äëÿ îäíîãî
ðîçðÿäó.  Áóäåìî ââàæàòè, ùî Ñë=Ñ. ³äïîâ³äíî   ôóíêö³ÿì çáóäæåííÿ ùRùS òðèãåðà ñêëàäåìî êàðòè Êàðíî, ³ çà ðåçóëüòàòàìè ñèíòåçó ïîáóäóºìî ñë³äóþ÷ó ñõåìó ë³÷èëüíèêà(ìàë.3.8.).Òóò T-ñèãíàë ïåðåíåñåííÿ.                  Ai,Qt\V,T  00    01   11   10 00 * * 1 * 01 0 0 0 1 11 1 1 0 1 10 1 1 1 *     ùR=ù ù(ùQt+ù(ùV+T)+ù(V+ùAi))                   Ai,Qt\V,T  00    01   11   10 00 1 1 0 1 01 1 1 1 * 11 * * 1 * 10 0 0 0 1   ùS=ù ù(Qt+ù(ùV+T)+ù(V+Ai))    Ïðè ïîáóäîâ³ ñõåìè âðàõóºìî, ùî ñèãíàë ïðåíåñåííÿ T ôîðìóºòüñÿ çã³äíî ç   ñë³äóþ÷îþ ôîðìóëîþ Ti=Qi-1*Ti-1, i-íîìåð ðîçðÿäó(T0=1).
                    A1    CT
                    A2                A1
                    A3                    A2
                   A4              A3
                   A5                   A4
                   A6                   A5
                                    A6      
                    V
                    C
                    R                
Ìàë.3.7.
Ôóíêö³îíàëüíå
çîáðàæåííÿ
              
ë³÷èëüíèêà.
                               Òàáëèöÿ.3.3
        Ñèíòåç ñõåìè ËÀÌÊ. V T Ai Qt Qt+1 ùR ùS 0 0 0 0 0 * 1 0 0 0 1 0 0 1 0 0 1 0 1 1 0 0 0 1 1 1 1 * 0 1 0 0 0 * 1 0 1 0 1 1 1 * 0 1 1 0 1 1 0 0 1 1 1 1 1 * 1 0 0 0 0 * 1 1 0 0 1 1 1 * 1 0 1 0 0 * 1 1 0 1 1 1 1 * 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1
                                                    
 Ñõåìà ÐÌÊ ì³ñòèòü 10 áàçîâèõ åëåìåíò³â. Ïðè ïîáóäîâ³ ñõåìè ñèãíàëè ùT1...ùT10
áóäåìî çí³ìàòè ç ³íâåðñíèõ
âèõîä³â åëåìåíò³â
ðåã³ñòðà. ʳëüê³ñòü ì³êðîñõåì ÏÇÏ âèçíà÷èìî çà ôîðìóëîþ: NÏÇÏ=]R/3[,  äå R - ðîçðÿäí³ñòü ì³êðîêîìàíäè R=10, NÏÇÏ=4
Äëÿ çáåð³ãàííÿ ì³êðîïðîãðàìè
äîñèòü îäí³º¿ ë³í³éêè ÏÇÏ, îñê³ëüêè QÏÇÏ=8, òîáòî îäíà ì³êðîñõåìà
ðîçðàõîâàíà íà çáåð³ãàííÿ 256  òðüîõá³òîâèõ
êîìá³íàö³é, à â íàøîìó âèïàäêó ïîòð³áíî ò³ëüêè 63. Ç óðàõóâàííÿì âèùåñêàçàíîãî
ïîáóäóºìî ñõåìó àâòîìàòà ç ïðèðîäíîþ àäðåñàö³ºþ ì³êðîêîìàíä(ìàë. 3.8).
           
              
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     
                                                                                                                                            
V                                                                                                                                         
                    1                             1                                                                                                                                                  
T0
                                                                                                                                                                                                           
1                    1               1                                                Q0                                                                                                                           S     TT                                                                                                                                             C           
Ai                                                                       1                 1                         R                                     1                1                                                                           R                                                               
C
Reset”
       T1
                                                                                                                                                                                                                                                                                                                                  Q1                                      
ùT1       T2
             
1                                                                                                                                                        Q2
ùQ1
 ùT2          T3
             
1                                                                                                                                                        Q3   
ùQ2                                                                                                               
                                               ........................................................................
  
Ìàë.3.8.Ñõåìà  ËÀÌÊ (óñüîãî 6
åëåìåíò³â,
ñèãíàëè V,C,”Reset”,Ai äëÿ âñ³õ, îêð³ì
ïåðøîãî, íå ïîêàçàí³).
  4.ÑÈÍÒÅÇ ÀÂÒÎÌÀÒÀ Ç
ÊÎÌÁ²ÍÎÂÀÍÎÞ ÀÄÐÅÑÀÖ²ªÞ      ̲ÊÐÎÊÎÌÀÍÄ.
  4.1.Ïðèíöèï ðîáîòè àâòîìàòà.
        Àâòîìàò ç êîìá³íîâàíîþ àäðåñàö³ºþ º
êîìá³íàö³ºþ ç àâòîìàò³â ç ïðèìóñîâîþ ³ ïðèðîäíîþ àäðåñàö³ºþ . Ó äàíîìó
àâòîìàò³ àäðåñà íàñòóïíî¿ ÌÊ çàäàºòüñÿ â ïîë³ ïîòî÷íî¿ ì³êðîêîìàíäè, ïðè öüîìó ïðè
íåâèêîíàíí³ ËÓ, ùî ïåðåâ³ðÿºòüñÿ, àáî ïðè áåçóìîâíîìó ïåðåõîä³ ïåðåõ³ä
çä³éñíþºòüñÿ çà çàäàíîþ
àäðåñîþ, à ïðè ³ñòèííîñò³
- çà àäðåñîþ íà îäèíèöþ á³ëüøó, í³æ ïîòî÷íà. Ôîðìàò êîìàíäè àâòîìàòà ç ÊÀ íàñòóïíèé(ìàë. 4.1).
        1         
Y            m  1         Õ         k  1                      A                                        l        
                                   Ìàë.
4.1.Ôîðìàò êîìàíäè àâòîìàòà ç ÊÀ.     
Òóò ó ïîë³
Y  ì³ñòèòüñÿ êîä, ùî çàäຠíàá³ð ì³êðîîïåðàö³é,
ó ïîë³ X-êîä
ëîã³÷íî¿ óìîâè, ùî ïåðåâ³ðÿºòüñÿ,  â
ïîë³ À - àäðåñà ïåðåõîäó ïðè
íåâèêîíàíí³
ëîã³÷íî¿ óìîâè àáî ïðè áåçóìîâíîìó ïåðåõîä³. Ðîçðÿäí³ñòü ïîë³â  âèçíà÷àºòüñÿ òàêèì ÷èíîì:
     m=]log2T[   Ò- ÷èñëî íàáîð³â ì³êðîîïåðàö³é,
ùî âèêîðèñòîâóþòüñÿ â ÃÑÀ, â
íàøîìó âèïàäêó  Ò=17,  m=5
      k=]log2­(L+1)[  L-÷èñëî ëîã³÷íèõ óìîâ â ÃÑÀ, â íàøîìó âèïàäêó L=6, l=3
      l=]log2Q[   Q -ê³ëüê³ñòü ì³êðîêîìàíä.
Ñòðóêòóðíà
ñõåìà àâòîìàòà ïðèâåäåíà íà ìàë. 4.2. Àâòîìàò ôóíêö³îíóº òàêèì ÷èíîì.  Ñõåìà çàïóñêó ñêëàäàºòüñÿ ç RS -òðèãåðà ³
ñõåìè  “&", ÿêà áëîêóº íàäõîäæåííÿ ñèíõðî³ìïóëüñ³â
íà ÐÌÊ.  Çà ñèãíàëîì “Ïóñê" òðèãåð âñòàíîâëþºòüñÿ â îäèíèöþ ³ â³äáóâàºòüñÿ çàïèñ ì³êðîêîìàíäè äî ðåã³ñòðó. Ïîëå Y ïîñòóïàº
íà ñõåìó ôîðìóâàííÿ ÌÎ ³
ïåðåòâîðþºòüñÿ â
äåÿêèé íàá³ð ì³êðîîïåðàö³é.
Ïîëå X ïîñòóïຠíà ñõåìó
ôîðìóâàííÿ àäðåñè, ÿêà  ôîðìóº ñèãíàë Z2,
ÿêùî ïåðåõ³ä áåçóìîâíèé
(X=0) àáî ËÓ, ùî
ïåðåâ³ðÿºòüñÿ,äîð³âíþº
íóëþ  àáî ñèãíàë  Z1  ó âèïàäêó ³ñòèííîñò³ ËÓ.
Çà ñèãíàëîì Z2 âì³ñò
ïîëÿ À íàäõîäèòü äî ë³÷èëüíèêà,à
ç íüîãî - íà àäðåñíèé âõ³ä ÏÇÏ.
À çà ñèãíàëîì Z1 íà àäðåñíèé âõ³ä òàêîæ íàäõîäèòü âì³ñò ë³÷èëüíèêà
àëå òåïåð öå àäðåñà ïîòî÷íî¿ ì³êðîêîìàíäè,
çá³ëüøåíà íà îäèíèöþ. Çà ñèãíàëîì y0 òðèãåð ñêèäàºòüñÿ â íóëü ³ àâòîìàò çóïèíÿº ñâîþ ðîáîòó.
 4.2.
Ïåðåòâîðåííÿ ïî÷àòêîâî¿ ÃÑÀ.
  Ïåðåòâîðåííÿ áóäåìî âèêîíóâàòè äâîìà
åòàïàìè. Íà
ïåðøîìó - ââåäåìî ñèãíàë y0 äî âåðøèí, ïîâ'ÿçàíèõ ç ê³íöåâîþ, ÿêùî âåðøèíà óìîâíà, òî ââåäåìî
 
                                                                                           +1
                                                                                 Z1           
                                                                                                                       
                                                                                                   ÑT            
                                                                                                                                Z2         
             
               S    T                   
&                                                  ÏÇÏ
 “Ïóñê”                                                                                                                     
                                                                                                                                                                     Ѳ           
R                                                                                                                                                                                                                                             ÐÌÊ                                                                                                                  Y                       
X                        A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ÑÔÌΠ                                                                                                                                                                                                                                                                                                                                                                                                                                                  y­0  
....            yi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Z1                                                                                                                                      ÑÔÀ              
                                                                                                                                            
                                                                                                                     
                                                                                                            äî ÎÀ                                  Z2                   
   
                                   Ìàë.4.2. Ñòðóêòóðíà
ñõåìà àâòîìàòà ç ÊÀ.                 
äîäàòêîâó îïåðàòîðíó âåðøèíó ç ñèãíàëîì y0. Êð³ì òîãî, ââåäåìî äîäàòêîâ³
âåðøèíè áåçóìîâíîãî ïåðåõîäó, âèõîäÿ÷è ç òèõ æå ì³ðêóâàíü, ùî ³ äëÿ àâòîìàòà ç ïðèðîäíîþ àäðåñàö³ºþ. Áóäåìî, îäíàê, ìàòè íà óâàç³,  ùî äëÿ àâòîìàòà ç ÊÀ ïåðåõ³ä ç îïåðàòîðíî¿
âåðøèíè ïðèð³âíþºòüñÿ äî áåçóìîâíîãî, òîìó â îäí³é òî÷ö³ ìîæå ñõîäèòèñÿ áóäü-ÿêà ê³ëüê³ñòü
áåçóìîâíèõ ïåðåõîä³â àáî ïåðåõîä³â ç îïåðàòîðíèõ
âåðøèí ³ ò³ëüêè îäèí ïî
ñòèííîñò³ ËÓ, ùî
ïåðåâ³ðÿºòüñÿ.  Íà äðóãîìó åòàï³
âèä³ëèìî ì³êðîêîìàíäè çàäàíîãî
ôîðìàòó, êîðèñòóþ÷èñü òèìè æ ïðàâèëàìè, ùî ³ äëÿ àâòîìàòà ç ÏÀ. Ç âðàõóâàííÿì
âèùåñêàçàíîãî îòðèìàºìî
ïåðåòâîðåíó ÃÑÀ (ìàë. 4.3).
    4.3.Ôîðìóâàííÿ âì³ñòó êåðóþ÷î¿ ïàì'ÿò³.
   Ïðè ôîðìóâàíí³ âì³ñòó êåðóþ÷î¿ ïàì'ÿò³ ñêîðèñòàºìîñÿ òèì æå
êîäóâàííÿì íàáîð³â ì³êðîîïåðàö³é
ËÓ, ùî ³ äëÿ àâòîìàò³â ç
ÏÀ ³ ïðèðîäíîþ àäðåñàö³ºþ (òàáë.
2.3, 2.4). Äëÿ àäðåñàö³¿ ì³êðîêîìàíä
âèïèøåìî ¿õ ïðèðîäí³ ïîñë³äîâíîñò³ òàê ñàìî, ÿê ³ äëÿ àâòîìàòà ç ïðèðîäíîþ àäðåñàö³ºþ, âðàõîâóþ÷è, 
ùî ïðèðîäíèì ââàæàºòüñÿ ò³ëüêè ïåðåõ³ä ïî ³ñòèííîñò³ ËÓ.
a1=[O1,O14]
a2=[ O2
,O19 ,O18 ,O46 ,O6 ,O42
,O43 ,O44 ,O9 ,O38 ]
a3=[ O3
,O15 ,O17 ]
a4=[ O4
,O5 ,O7,O8]
a5=[ O10
]
a6=[ O11
,O13]
a7=[ O12]
a8=[ O16,O29,O30,O25,O37,O35,O36]
a9=[ O20
,O22 ]
a10=[ O21,O23]
a11=[ O26,O32,O33]
a12=[ O27
,O24 ,O45]
a13=[ O34]
a14=[ O39]
a15=[ O40]
a16=[ O41]
a17=[ O28]­
a18=[O31]
    
  Ïåðåðàõóºìî â òàáëèö³ àäðåñàö³¿ (òàáë. 4.1) ï³äðÿä âñ³
ïîñë³äîâíîñò³ a1-a18 ³ çàêîäóºìî ¿õ
R-ðîçðÿäíèì êîäîì. R=]log2N[, N-ê³ëüê³ñòü ì³êðîêîìàíä(N=46,
R=6).  Çàêîäóºìî òàêîæ îïåðàòîðè Yi,
ïîñòàâèâøè ¿ì ó â³äïîâ³äí³ñòü ï`ÿòèðîçðÿäíèé
êîä. Ó òàáëèö³ 4.2 â³äîáðàçèìî âì³ñò êåðóþ÷î¿ ïàì'ÿò³, çàïîâíèâøè ïîëÿ FX, FY,
FA.
           
                                                                             Òàáëèöÿ 4.1.                                             
                                                                                                       
                                                            Àäðåñàö³ÿ ÌÊ.       ìê À1À2À3À4À5À6 O1   000000 O14   000001 O2   000010 O19   000011 O18   000100 O46   000101 O6   000110 O42   000111 O43   001000 O44   001001 O9   001010 O38   001011 O3   001100 O15   001101 O17   001110 O4   001111 O5   010000 O7   010001 O8   010010 O10   010011 O11   010100 O13   010101 O12   010110 O16   010111 O29   011000 O30   011001 O25   011010 O37   011011 O35   011100 O36   011101 O20   011110 O22   011111 O21   100000 O23   100001 O26   100010 O32   100011 O33   100100 O27   100101 O24   100110 O45   100111 O34   101000 O39   101001 O40   101010 O41   101011 O28   101100 O31   101101
                                                          
                                                                                                                             Òàáëèöÿ 4.2
                                                        
Âì³ñò
êåðóþ÷î¿
ïàì`ÿò³.                                                                                                                                                                ¹    A     FY   FX       FA Îï. A1A2A3A4A5À6 T1T2T3T4T5T6 T7T8T9 T10T11T12T13T14T15 O1  000000   000000  100     000010 O14  000001   000000  000     001101 O2  000010   000000  101     001100 O19  000011   000000  110     011110 O18  000100   000000  001     000111 O46  000101   010000  110     101101 O6  000110   000010  101     101100 O42  000111   000111  101     101010 O43  001000   000000  010     101011 O44  001001   010001  100     011010 O9  001010   001000  100     010100 O38  001011   101010  000     000000 O3  001100   000000  110     001111 O15  001101   000001  100     010111 O17  001110   000000  000     011010 O4  001111   000000  001     001101 O5  010000   000000  010     001010 O7  010001   000110  110     010011 O8  010010   101100  000     000000 O10  010011   000111  000     010110 O11  010100   000000  110     011010 O13  010101   100111  000     000000 O12  010110   001001  000     011010 O16  010111   000000  110     001010 O29  011000   000110  110     000111 O30  011001   000000  011     000110 O25  011010   000100  100     100010 O37  011011   001010  001     001011 O35  011100   000000  010     001010 O36  011101   000001  000     001001 O20  011110   001101  001     100000 O22  011111   000101  000     100110 O21  100000   001110  011     101001 O23  100001   000000  000     011010 O26  100010   000000  101     100101 O32  100011   000000  110     101000 O33  100100   000000  000     001010 O27  100101   000000  110     011000 O24  100110   001111  110     000101 O45  100111   100011   000     000000 O34  101000   100000   000     000000   
                                                                                                           
                                                                                                               Òàáëèöÿ 4.2.
                                                                                                            (ïðîäîâæåííÿ) O39    101001      100000    000         000000 O40    101010      100000    000         000000 O41    101011      100000    000         000000 O28    101100       001011    000         010001 O31    101101      100000    000        000000
       4.4.Ñèíòåç
ñõåìè àâòîìàòà.
       Ïðè ñèíòåç³ ñõåìè ñêîðèñòàºìîñÿ âæå ðîçðîáëåíèìè âóçëàìè äëÿ
àâòîìàò³â ç ÏÀ ³ ïðèðîäíîþ àäðåñàö³ºþ.
ÑÔÀ àâòîìàòà ç ÊÀ àíàëîã³÷íà ÑÔÀ àâòîìàòà ç ïðèðîäíîþ àäðåñàö³ºþ.
Ñõåìè ÑÔÌÎ, ÐÌÊ  àíàëîã³÷í³ â³äïîâ³äíèì âóçëàì àâòîìàòà ç ÏÀ (ðîçä.2.4), à ñõåìà ËÀÌÊ çàïîçè÷åíà ç àâòîìàòà ç ïðèðîäíîþ àäðåñàö³ºþ (ðîçä.3.4). ³äì³íí³ñòü ïîëÿãຠëèøå â òîìó, ùî
äëÿ ÐÌÊ áóäå ïîòð³áíî 15
áàçîâèõ åëåìåíò³â.
Âðàõîâóþ÷è âèùåñêàçàíå, ïîáóäóºìî
ñõåìó àâòîìàòà ç êîìá³íîâàíîþ àäðåñàö³ºþ ì³êðîêîìàíä(ìàë.
4.4).
     
5. ÏÎвÂÍßËÜÍÀ
ÕÀÐÀÊÒÅÐÈÑÒÈÊÀ ÀÂÒÎÌÀÒ²Â.
5.1.
ϳäðàõóíîê àïàðàòóðíèõ âèòðàò.
  Âèçíà÷èìî àïàðàòóðí³
âèòðàòè íà êîæíèé ç àâòîìàò³â. Îñê³ëüêè
ñèíòåç ë³÷èëüíèêà íå áóâ îáîâ'ÿçêîâèì, òî ïðè âèçíà÷åíí³ àïàðàòóðíèõ
âèòðàò áóäåìî ââàæàòè éîãî
äèíèì  âóçëîì.
1.
Ó
àâòîìàò³ ç ïðèìóñîâîþ àäðåñàö³ºþ ñõåìà ÑÔÀ ì³ñòèòü  28 ëîã³÷íèõ    åëåìåíò³â, ÑÔÌÎ
- 57  ËÅ,  âóçîë çàïóñêó ³ ñõåìà
&" - 4 ËÅ ³, êð³ì òîãî,  íåîáõ³äíî 6 åëåìåíò³â-³íâåðòîð³â äëÿ îòðèìàííÿ ñèãíàë³â ùX1...ùX3,ùP1...ùP3 Òàêîæ
ïîòð³áíî  27 åëåìåíò³â äëÿ ÐÀÌÊ ³ ÐÌÊ.
Òàêèì ÷èíîì, ñóìàðíå ÷èñëî ËÅ
äîð³âíþº 122. Äëÿ ïîáóäîâè
ÐÀÌÊ ³ ÐÌÊ òàêîæ áóäå ïîòð³áíî 27 òðèãåð³â. ʳëüê³ñòü ÏÇÏ- 7.
2.
Ó
àâòîìàò³ ç ïðèðîäíîþ àäðåñàö³ºþ ñõåìà ÑÔÀ ì³ñòèòü  12 
ëîã³÷íèõ    åëåìåíò³â, ÑÔÌÎ - 68  ËÅ,  âóçîë ñêèäàííÿ - 2 ËÅ
, êð³ì òîãî,  íåîáõ³äíî 6 åëåìåíò³â-³íâåðòîð³â äëÿ îòðèìàííÿ ñèãíàë³âùX1...ùX3,ùP1...ùP3
10 åëåìåíò³â äëÿ  ÐÌÊ. Òàêèì ÷èíîì, ñóìàðíå ÷èñëî ËÅ äîð³âíþº 98. Äëÿ ïîáóäîâè  ÐÌÊ
òàêîæ áóäå ïîòð³áíî 10 òðèãåð³â.
ʳëüê³ñòü ÏÇÏ- 4. Ñõåìà
òàêîæ ì³ñòèòü îäèí ë³÷èëüíèê.
3. Ó àâòîìàò³ ç êîìá³íîâàíîþ àäðåñàö³ºþ ñõåìà ÑÔÀ ì³ñòèòü 
10  ëîã³÷íèõ    åëåìåíò³â, ÑÔÌÎ - 57  ËÅ,  âóçîë çàïóñêó ³ ñõåìà “&" - 4 ËÅ ³, êð³ì
òîãî,  íåîáõ³äíî 6 åëåìåíò³â-³íâåðòîð³â äëÿ îòðèìàííÿ ñèãíàë³â ùX1...ùX3,ùP1...ùP3
15 åëåìåíò³â äëÿ  ÐÌÊ. Òàêèì ÷èíîì, ñóìàðíå ÷èñëî ËÅ äîð³âíþº 92. Äëÿ ïîáóäîâè  ÐÌÊ
òàêîæ áóäå ïîòð³áíî 15 òðèãåð³â.
ʳëüê³ñòü ÏÇÓ- 5.  Ñõåìà òàêîæ ì³ñòèòü îäèí ë³÷èëüíèê.
   Ñêëàäåìî çâåäåíó
òàáëèöþ âèòðàò íà ñèíòåçîâàí³ àâòîìàòè.(òàáë. 5.1.)
                                                                                              Òàáëèöÿ
5.1.
                          Àïàðàòóðí³
âèòðàòè äëÿ ñèíòåçîâàíèõ
àâòîìàò³â.                                                                                 Òèï  àâòîìàòà Ëîã³÷í³ åëåìåíòè Òðèãåðè ÏÇÏ Ë³÷èëüíèêè ÏÀ      122      27     7         0 ÏðÀ       98      10     4         1 ÊÀ       92      15     5         1
5.2. Âèçíà÷åííÿ
àâòîìàòà ç ì³í³ìàëüíèìè àïàðàòóðíèìè
âèòðàòàìè.
 Çàïîâíèìî òàáëèöþ, äå äëÿ êîæíîãî àâòîìàòà
çíàêîì “+" â³äì³òèìî
ì³í³ìàëüí³ âèòðàòè íà
äàíèé òèï åëåìåíò³â, à çíàêîì “-" -íåì³í³ìàëüí³
(òàáë. 5.2.). 
                                                                                                                      Òàáëèöÿ
5.2. Òèï àâòîìàòà Ëîã³÷í³ åëåìåíòè Òðèãåðè ÏÇÏ Ë³÷èëüíèêè ÏÀ               -        -        -          + ÏðÀ               -       +       +           - ÊÀ               +        -       -           -
  ßê âèäíî ç òàáëèö³ 5.2., àâòîìàò ç ïðèðîäíîþ àäðåñàö³ºþ
âèãðຠïî äâîì ïàðàìåòðàì:
ïî ê³ëüêîñò³ òðèãåð³â
ÏÇÏ.
  
Äëÿ ï³äòâåðäæåííÿ ïðàâèëüíîñò³ âèáîðó àâòîìàòà çàñòîñóºìî òàêîæ îö³íêó
çà Êâàéíîì (çà ñóìàðíîþ ê³ëüê³ñòþ
âõîä³â åëåìåíò³â).
Áóäåìî ââàæàòè ê³ëüê³ñòü
âõîä³â ó ËÅ - 4, ó òðèãåðà
- 4, ó ÏÇÏ -9 ³ ó ë³÷èëüíèêà - 9. Ç âðàõóâàííÿì âèùåíàâåäåíèõ
çíà÷åíü, äëÿ àâòîìàòà ç ÏÀ ïîêàçíèê îö³íêè ñêëàäå - 659, äëÿ àâòîìàòà ç ÏðÀ -
477, äëÿ àâòîìàòà ç ÊÀ- 482.
  ßê âèäíî ç ïðèâåäåíèõ îö³íîê, àâòîìàò ç ïðèìóñîâîþ
àäðåñàö³ºþ äàëåêî íå îïòèìàëüíèé, à àâòîìàòè ç ïðèðîäíîþ ³ êîìá³íîâàíîþ
àäðåñàö³ºþ ïî âèòðàòàõ
ïðàêòè÷íî îäíàêîâ³, àëå âñå æ àâòîìàò ç ÏðÀ ìຠäåÿêó ïåðåâàãó ïåðåä àâòîìàòîì
ç ÊÀ. Òàêèì ÷èíîì,
ðåçóëüòàòîì ïðîåêòóâàííÿ áóäå ñõåìà àâòîìàòà ç ïðèðîäíîþ àäðåñàö³ºþ ì³êðîêîìàíä. 
ðåôåðàòû Ðåêîìåíäóåì ðåôåðàòûðåôåðàòû

     
Ðåôåðàòû @2011