Доклад: Задачи по теме "Логические выражения"
Задачи по
теме "Логические выражения"
В обычной
школьной и вузовской практике учащимся и студентам предлагаются для решения те
задания, которые представлены в задачниках или составлены преподавателем.
Однако усвоение материала будет более осознанным, если предоставить ученикам
возможность самостоятельно разработать и решить задачи на указанную тему. Здесь
появляется возможность дать волю фантазии, выдумке, сделать какие-то нестандартные
ходы. Всё это идёт на пользу делу.
В настоящей
публикации представлены наиболее удачные задачи по теме "Логические
выражения и их запись на языке Pascal", которые были составлены
студентами. Задание они получили в следующей формулировке: "Составить высказывание,
содержащее переменные, которое в зависимости от их значений принимает значение
TRUE или FALSE. Записать соответствующее логическое выражение.". Тема
"Логические выражения" является очень важной при изучении
программирования как в школьном, там и вузовском курсе. Зачастую она остается
незаслуженно обойденной, в то время как именно по этой причине учащиеся
затрудняются правильно построить логическое выражения, являющееся условием в
развилке или цикле. Потому подобного рода задания позволяют акцентировать
внимание на указанной проблематике и лучшей степени подготовить учащихся к
изучению тем "Развилка", "Циклы".
Что касается
моего задания, то следует отметить, что некоторые студенты подошли к его
выполнению формально, предложив полные аналоги задач из учебников, но были и
своего рода находки. Ниже приведены сами задания и соответствующие им
логические выражения.
1. Сумма цифр
заданного четырёхзначного числа N превосходит произведение цифр этого же числа
на 1.
N Div
1000 + N Div 100 Mod 10 + N Mod 100 Div 10 + N Mod 10 - 1 =
(N Div 1000) * (N Div 100 Mod 10) *
(N Mod 100 Div 10) * (N Mod 10)
2. Сумма двух
последних цифр заданного трёхзначного числа N меньше заданного K, а первая
цифра N больше5.
(N Div
10 Mod 10 + N Mod 10 < K) And (N Div 100 > 5)
3. Заданное
натуральное число N является двузначным и кратно K.
(N
>= 10) And (N <= 99) And (N Mod K = 0)
или
(N in [10..99]) And (N Mod K = 0)
4. Сумма двух
первых цифр заданного четырёхзначного числа N равна произведению двух
последних.
N Div
1000 + N Div 100 Mod 10 = (N Mod 100 Div 10) * (N Mod 10)
5. Каждая
последующая цифра трёхзначного числа N, начиная со старшего разряда, больше
предыдущей на 1.
(N Mod
10 - N Div 10 Mod 10 = 1) And (N Div 10 Mod 10 - N Div 100 = 1)
6. X —
отрицательное целое число, делящееся на 3 нацело.
(X <
0) And (X Mod 3 = 0)
7. Заданы три
положительных числа A, B, C. Эти числа являются сторонами равнобедренного
треугольника.
(A + B
> C) And (A + C > B) And (B + C > A) And
((A = B) Or (B = C) Or (A = C))
Для действительных
A, B, C
(A + B
> C) And (A + C > B) And (B + C > A) And
((Abs(A - B) < 1E-7) Or (Abs(B -
C) < 1E-7) Or (Abs(A - C) < 1E-7))
8. Среди
заданных целых чисел A, B, C, D есть хотя бы два чётных.
Ord(Not Odd(A)) + Ord(Not Odd(B)) +
Ord(Not Odd(C)) + Ord(Not Odd(D)) >= 2
9.
Прямоугольник с измерениями A, B подобен прямоугольнику с соответствующими
измерениями C, D.
Abs(A /
C - B / D) < 1E-7
10. Дробь A / B
является правильной.
(A <
B) And (B > 0)
11. Дано
натуральное число N — некоторый год. Этот год является високосным.
(N Mod
4 = 0) And (N Mod 100 <> 0) Or (N Mod 400 = 0)
или
(N Mod 4 = 0) And Not((N Mod 100 = 0) Xor (N Mod 400 = 0))
Список
литературы
Для подготовки
данной работы были использованы материалы с сайта http://www.comp-science.narod.ru/
|