Главная » Каталог    
рефераты Разделы рефераты
рефераты
рефератыГлавная

рефератыБиология

рефератыБухгалтерский учет и аудит

рефератыВоенная кафедра

рефератыГеография

рефератыГеология

рефератыГрафология

рефератыДеньги и кредит

рефератыЕстествознание

рефератыЗоология

рефератыИнвестиции

рефератыИностранные языки

рефератыИскусство

рефератыИстория

рефератыКартография

рефератыКомпьютерные сети

рефератыКомпьютеры ЭВМ

рефератыКосметология

рефератыКультурология

рефератыЛитература

рефератыМаркетинг

рефератыМатематика

рефератыМашиностроение

рефератыМедицина

рефератыМенеджмент

рефератыМузыка

рефератыНаука и техника

рефератыПедагогика

рефератыПраво

рефератыПромышленность производство

рефератыРадиоэлектроника

рефератыРеклама

рефератыРефераты по геологии

рефератыМедицинские наукам

рефератыУправление

рефератыФизика

рефератыФилософия

рефератыФинансы

рефератыФотография

рефератыХимия

рефератыЭкономика

рефераты
рефераты Информация рефераты
рефераты
рефераты

Реферат: Вероятностный подход

ПЛАН

1. Квантовая механика

2. Вглубь материи .

3. Физические взаимодействия

Квантовая механика

Квантовая механика — это физическая теория, устанавливающая способ описания и

законы движения на микроуровне. Ее начало сов­пало с началом века. М. Планк в

1900 году предположил, что свет ис­пускается неделимыми порциями энергии —

квантами, и математи­чески представил это в виде формулы E=hv, где v —

частота света, а h — универсальная постоянная, характеризующая меру дискретной

порции энергии, которой обмениваются вещество и излучение. В атомную теорию

вошли, таким образом, прерывистые физические ве­личины, которые могут

изменяться только скачками.

Последующее изучение явлений микромира привело к ре­зультатам, которые резко

расходились с общепринятыми в класси­ческой физике и даже теории

относительности представлениями. Классическая физика видела свою цель в

описании объектов, суще­ствующих в пространстве и в формулировке законов,

управляющих их изменениями во времени. Но для таких явлений, как

радиоактив­ный распад, дифракция, испускание спектральных линий можно

ут­верждать лишь, что имеется некоторая вероятность того, что инди­видуальный

объект таков и что он имеет такое-то свойство. В кванто­вой механике нет

места для законов, управляющих изменениями индивидуального объекта во

времени.

Для классической механики характерно описание частиц пу­тем задания их

положения и скоростей и зависимости этих величин от времени. В квантовой

механике одинаковые частицы в одинако­вых условиях могут вести себя по-

разному. Эксперимент с двумя от­верстиями, через которые проходит электрон,

позволяет и требует применения вероятностных представлений. Нельзя сказать,

через какое отверстие пройдет данный электрон, но если их много, то мож­но

предположить, что часть их проходит через одно отверстие, часть — через

другое. Законы квантовой механики — законы статистичес­кого характера. «Мы

можем предсказать, сколько приблизительно атомов (радиоактивного вещества —

А. Г.) распадутся в следующие полчаса, но мы не можем сказать... почему

именно эти отдельные ато­мы обречены на гибель» (Эйнштейн А., Инфельд Л. Цит.

соч.- С. 232).

В микромире господствует статистика, а не уравнения Макс­велла или законы

Ньютона. «Вместо этого мы имеем законы, управ­ляющие изменениями во времени»

(Там же.- С. 237). Статистические законы можно применить только к большим

совокупностям, но не к отдельным индивидуумам. Квантовая механика

отказывается от по­иска индивидуальных законов элементарных частиц и

устанавлива­ет статистические законы. На базе квантовой механики невозможно

описать положение и скорость элементарной частицы или предска­зать ее будущий

путь. Волны вероятности говорят нам о вероятности встретить электрон в том

или ином месте.

В. Гейзенберг делает такой вывод: «В экспериментах с атом­ными процессами мы

имеем дело с вещами и фактами, которые столь же реальны, сколь реальны любые

явления повседневной жизни. Но атомы или элементарные частицы реальны не в

такой степени. Они образуют скорее мир тенденций или возможностей, чем мир

вещей и фактов» (Гейзенберг. Цит. соч.- С. 117).

В первой модели атома, построенной на основе эксперимен­тального обнаружения

квантования света, H. Бор (1913 год) объяснил это явление тем, что излучение

происходит при переходе электрона с одной орбиты на другую, при этом

рождается квант света с энерги­ей, равной разности энергий уровней, между

которыми осуществ­лялся переход. Так возникает линейчатый спектр — основная

осо­бенность атомных спектров (в спектрах оказываются лишь опреде­ленные

длины волн).

Важная особенность явлений микромира заключается в том, что электрон ведет

себя подобно частице, когда движется во виеш-нем электрическом или магнитном

поле, и подобно волне, когда диф-рагирует, проходя сквозь кристалл. Поведение

потока частиц—эле­ктронов, атомов, молекул — при встрече с препятствиями или

отвер­стиями атомных размеров подчиняется волновым законам: наблюдаются

явления дифракции, интерференции, отражения, преломления и т. п. Луи де

Бройль предположил, что электрон — это волна определенной длины.

Дифракция подтверждает волновую гипотезу, отсутствие увеличения энергии

выбиваемых светом частиц — квантовую. Это и получило название корпускулярно-

волнового дуализма. Как же описывать процессы в микромире, если «нет никаких

шансов после­довательно описать световые явления, выбрав только какую-либо

одну из двух возможных теорий — волновую или квантовую» (Эйн­штейн А.,

Инфельд Л. Цит. соч.- С. 215)?

Некоторые эффекты объясняются волновой теорией, некото­рые другие — квантовой.

Поэтому следует использовать разные формулы и из волновой и из квантовой теории

для более полного описания процессов — таков смысл принципа дополнительности Н.

Бора. «Усилия Бора были направлены на то, что бы сохранить за обоими

наглядными представлениями, корпускулярным и волновым, одинаковое право на

существование, причем он пытался пока­зать, что хотя эти представления возможно

исключают друг друга, однако они лишь вместе делают возможным полное описание

про­цессов в атоме» (Гейзенберг В. Цит. соч.- С. 203).

С принципом дополнительности связано и так называемое «со­отношение

неопределенностей», сформулированное в 1927 году Вернером Гейзенбергом, в

соответствии с которым в квантовой меха­нике не существует состояний, в

которых и местоположение, и коли­чество движения (произведение массы на

скорость) имели бы вполне определенное значение. Частица со строго

определенным импульсом совершенно не локализована. Чем более определенным

становится импульс, тем менее определенно ее положение.

Соотношение неопределенностей гласит, что для абсолютно точной локализации

микрочастицы необходимы бесконечно боль­шие импульсы, что физически не может

быть осуществлено. Более того, современная физика элементарных частиц

показывает, что при очень сильных воздействиях на частицу, она вообще не

сохраня­ется, а происходит даже множественное рождение частиц.

В более общем плане можно сказать, что только часть относя­щихся к квантовой

системе физических величин может иметь одно­временно точные значения,

остальные величины оказываются нео­пределенными. Поэтому во всякой квантовой

системе не могут одно­временно равняться нулю все физические величины.

Энергию системы также, можно измерить с точностью, не пре­вышающей

определенной величины. Причина этого — во взаимо­действии системы с

измерительным прибором, который препятству­ет точному измерению энергии. Из

соотношения неопределенностей вытекает, что энергии возбужденных состояний

атомов, молекул, ядер не могут быть строго определенными. На этом выводе и

основа­на гипотеза происхождения Вселенной из «возбужденного вакуума».

Значение эксперимента возросло в квантовой механике до та­кой степени, что,

как пишет Гейзенберг, «наблюдение играет решаю­щую роль в атомном событии, и

что реальность различается в зави­симости от того, наблюдаем мы ее или нет»

(Гейзенберг В. Цит. соч.- С. 24). Из данного обстоятельства, заключающегося в

том, что сам изме­рительный прибор влияет на результаты измерения и участвует

в формировании изучаемого явления, следовало, во-первых, пред­ставление об

особой « физической реальности », которой присущ дан­ный феномен, а, во-

вторых, представление о субъект-объектном единстве как единстве

измерительного прибора и изучаемой реаль­ности. «Квантовая теория уже не

допускает вполне объективного описания природы» (Там же.- С. 61). Человек

перешел на тот уровень исследования, где его влияние оказывается неустранимым

в ходе эксперимента и фиксируемым результатом является взаимодействие

изучаемого объекта и измерительного прибора. Итак, принципиально новыми

моментами в исследовании микромира стали: 1) каждая элементарная частица

обладает как корпускулярными, так и волновыми свойствами; 2) вещество может

пере­ходить в излучение (аннигиляция частицы и античастицы дает фо­тон, т. е.

квант света); 3) можно предсказать место и импульс элементарной частицы

только с определенной вероятностью; 4) прибор, исследующий реальность, влияет

на нее; 5) точное измерение возможно только при потоке частиц, но не одной

частицы.

По существу, относительность восторжествовала и в квантовой механике, так как

ученые признали, что нельзя: 1) найти объективную истину безотносительно от

измерительного прибора; 2) знать ' одновременно и положение и скорость

частиц; 3) установить, имеем ли мы в микромире дело с частицами или волнами.

Это и есть торжество относительности в физике XX века.

Вглубь материи

В химии элементом назвали субстанцию, которая не могла быть разложена или

расщеплена какими угодно средствами, имевшимися в то вре­мя в распоряжении

ученых: кипячением, сжиганием, растворением, смешиванием с другими

веществами. Затем в физике появилось поня­тие атома, заимствованное у

Демокрита (с греч. «неделимый»), которым была названа мельчайшая единица

материи, входящая в состав хими­ческого элемента. Химический элемент состоит

из одинаковых атомов.

Потом выяснилось, что сам атом состоит из элементарных час­тиц. В первой модели

атома, предложенной Э. Резерфордом, элек­троны движутся вокруг ядра, как

планеты вокруг Солнца (планетар-. ная модель атома). Установлено, что

поперечник атома составляет 10'8 см, а ядра — 10'12 см.

Масса протона больше массы электрона в 2000 раз. Плотность ядра 1014

г/см3. Превращение химических ве­ществ друг в друга, о чем мечтали

алхимики, возможно, но для этого нужно изменить атомное ядро, а это требует

энергий в миллионы раз превосходящих те, которые имеют место при химических

процессах.

В XX веке открыто огромное количество элементарных частиц и выявлены

закономерности их взаимодействия. Их можно разде­лить на несколько групп:

адроны (из них состоят ядра), лептоны (эле­ктроны, нейтрино), фотоны (кванты

света без массы покоя). Фотоны и нейтрино движутся со скоростью света.

Немецкий физик П. Дирак предсказал в 1936 году существова­ние античастиц с

той же массой, что и частицы, но зарядом противо­положного знака. К

настоящему времени на ускорителях высоких энергий получены

позитроны(античастицы электронов) и антипротоны. При столкновении частица и

античастица аннигилируют с вы­делением фотонов — безмассовых частиц света

(вещество перехо­дит в излучение). В результате взаимодействия фотонов могут

рож­даться пары «частица — античастица».

Открытие все большего количества элементарных частиц под­твердило

взаимопревращение вещества и энергии (предсказанное, впрочем, еще

Анаксимандром), так что материя, которая прежде отождествлялась с веществом,

все больше начала походить на мате­рию как «потенцию» в смысле Аристотеля,

которая нуждается в форме, чтобы стать вещественной реальностью.

Понятия «химического элемента» и «элементарной частицы» свидетельствуют о

том, что и то, и другое когда-то предполагалось простым и бесструктурным.

Затем ученые перестали употреблять для каждого нового уровня одно и то же

слово элемент-неделимый и для следующего уровня взяли ничего конкретно не

значащее слово из художественного произведения «кварк». Может так точнее и

бли­же к истине. Все кажется элементарным, пока не обнаружишь его со­ставные

части. Будет ли конец возможности расщепления опреде­лит только прогресс

научного знания.

Теоретически предсказанные кварки, главной особенностью которых является

дробный заряд, были затем экспериментально найдены. По сообщениям

американских ученых в 1994 году обнару­жен последний из шести разновидностей,

самый тяжелый кварк.

Физические взаимодействия

Известны четыре основных физических взаимодействия, которые определяют

структуру нашего мира: сильные, слабые, электромаг­нитные и гравитационные.

I. Сильные взаимодействия имеют место между адронами (от греч. «адрос» —

сильный), к которым относятся барионы (греч. «ба-рис» — тяжелый) — это нуклоны

(протоны и нейтроны) и гипероны, и мезоны. Сильные взаимодействия возможны

только на больших расстояниях (радиус примерно 10"13 см.).

Одно из проявлений сильных взаимодействий — ядерные си­лы. Сильные

взаимодействия открыты Э. Резерфордом в 1911 году одновременно с открытием

атомного ядра (этими силами объясняет­ся рассеяние а-частиц, проходящих через

вещество). Согласно гипо­тезе Юкавы (1935 г.) сильные взаимодействия состоят

в испускании промежуточной частицы — переносчика ядерных сил. Это пи-мезон,

обнаруженный в 1947 году, с массой в 6 раз меньше массы нуклона, и найденные

позже другие мезоны. Нуклоны окружены «облаками» мезонов.

Нуклоны могут приходить в возбужденное состояния- барионные резонансы — и

обмениваться при этом иными частицами. При столкновении барионов их облака

перекрываются и «возбуждают­ся», испуская частицы в направлении разлетающихся

облаков. Из центральной области столкновения могут испускаться в различных

направлениях более медленные вторичные частицы. Ядерные силы не зависят от

заряда частиц. В сильных взаимодействиях величина заряда сохраняется.

II. Электромагнитное взаимодействие в 100-1000 раз слабее сильного

взаимодействия. При нем происходит испускание и погло­щение «частиц света» —

фотонов.

III. Слабые взаимодействия слабее электромагнитного, но сильнее

гравитационного. Радиус действия на два порядка меньше радиуса сильного

взаимодействия. За счет слабого взаимодействия светит Солнце (протон

превращается в нейтрон, позитрон и нейтри­но). Испускаемое нейтрино обладает

огромной проницающей способ­ностью — оно проходит через железную плиту

толщиной миллиард км. При слабых взаимодействиях меняется заряд частиц.

Слабое взаимодействие представляет собой не контактное взаимодействие, а

осуществляется путем обмена промежуточными тяжелыми частицами — бозонами,

аналогичными фотону. Бозон виртуален и нестабилен.

IV. Гравитационное взаимодействие во много раз слабее элек­тромагнитного.

«Спустя 100 лет после того, как Ньютон открыл закон тяготения, Кулон

обнаружил такую же зависимость электрической силы от расстояния. Но закон

Ньютона и закон Кулона существенно различаются в следующих двух отношениях.

Гравитационное при­тяжение существует всегда, в то время как электрические

силы су­ществуют только в том случае, если тела обладают электрическими

зарядами. В законе тяготения имеется только притяжение, а элект­рические силы

могут как притягивать, так и отталкивать» (Эйн­штейн А., Инфельд Л. Цит.

соч.- С. 65).

Одна из главных задач современной физики — создать общую теорию поля и

физических взаимоотношений. Но действительное развитие науки далеко не всегда

совпадает с планируемым.

Новый диалог с природой возникает и в результате изучения механизмов эволюции

неживых систем в новой науке — синергети­ке. «Установившееся в результате ее

(науки — А. Г.) успехов, став­шее для европейцев традиционным видение мира —

взгляд со сторо­ны. Человек ставит опыты, ищет объяснение их результатам, но

сам себя частью изучаемой природы не считает. Он — вне ее, выше. Те­перь же

начинают изучать природу изнутри, учитывать и наше лич­ное присутствие во

Вселенной, принимать во внимание наши чувст­ва и эмоции» (И. Пригожин.

Краткий миг торжества.- С. 315).

Список литературы

1. Эйнштейн А., Инфельд Л. Эволюция физики. М., 1965.

2. Гейзенберг В. Физика и философия. Часть и целое. М., 1989.

3. Пригожий И., Стенгерс И. Порядок из хаоса. М., 1986.

4. Пригожин И., Стенгерс И. Время, хаос, квант. М., 1994.

5. Мечников Л. И. Цивилизация и великие исторические реки. М., 1995.

6. Селье Г. От мечты к открытию. М., 1987.

7. Краткий миг торжества. М., 1989.

рефераты Рекомендуем рефератырефераты

     
Рефераты @2011